The TARANIS mission

J-L. Pinçon¹; E. Blanc²; P-L. Blelly³; F. Lebrun⁵; M. Parrot¹; J-L. Rauch¹; J-A. Sauvaud⁴; E. Seran⁴

1. LPC2E, CNRS/University of Orléans, France - 2. DASE/LDG, CEA, France - 4. LATMOS, CNRS, France 3. IRAP, CNRS/University of Toulouse, France - 5. APC, CNRS/University of Paris 7, France

Tool for the Analysis of RAdiation from lightNIng and Sprites

Motivation: Atmosphere-ionosphere-magnetosphere couplings

- Dimension: ~ 1m³
- Mass of the Scientific Payload: ~ 35 Kg

TARANIS is a satellite dedicated to the study of impulsive energy transfers between the atmosphere of the Earth and the space environment.

Orbit:

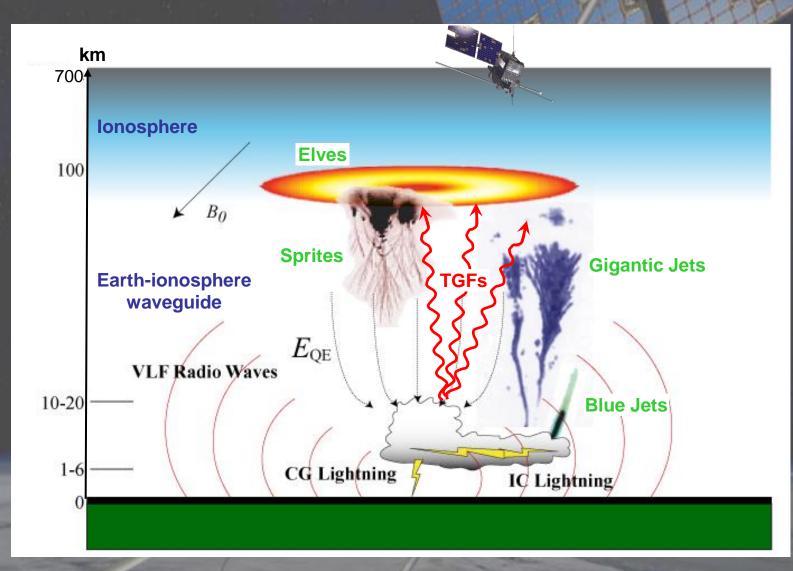
- Sun-synchronous

Time stamping

- accuracy: ±1 m
- local time 22:30 \rightarrow 02:00
- Inclination: 98°
- Altitude: 700 km

Pointing accuracy - localization: 5 km

TAR


Subsystems:

- mass memory: 16 Gbits
- X band telemetry: 16.8 Mbits/s

Data: 4 GB/day

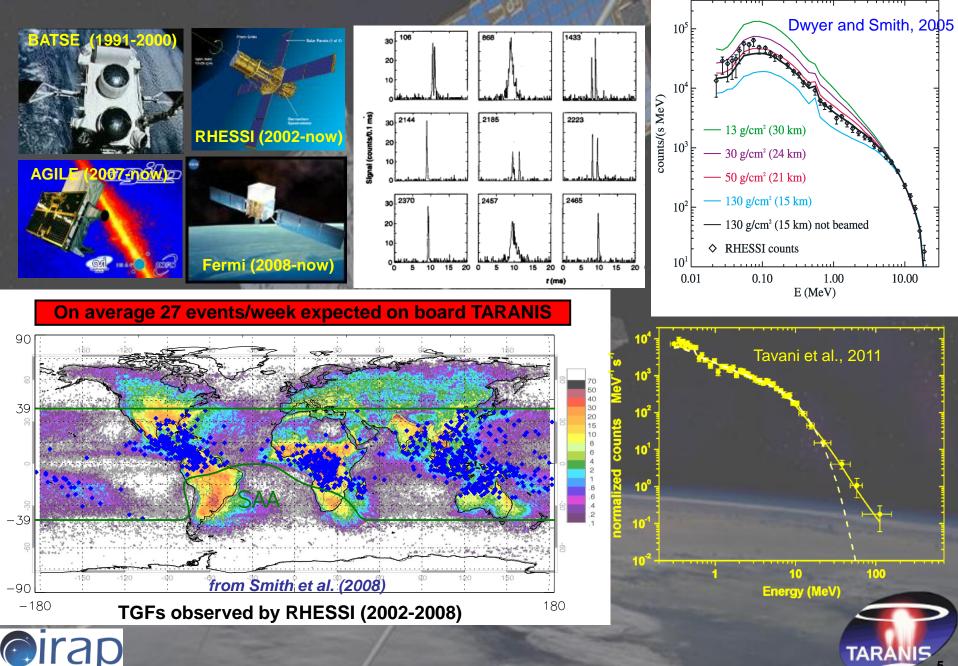
- Combined Nadir observations of TLEs and TGFs.
- High resolution measurement of energetic electrons.
- Wave field measurements over the frequency range [DC 35 MHz].

TLEs and TGFs above thunderclouds

Elves: 1 ms E&M pulse

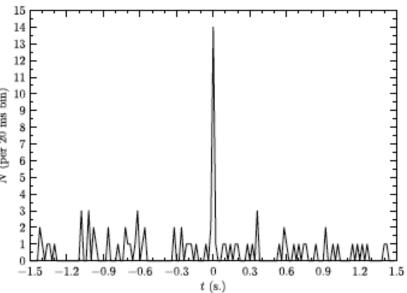
Halo: 1-5 ms: glow discharge Sprite: 1-10 ms; streamer discharge

Blue jets: 5-1000ms process ?


Transient Luminous Events (TLEs)

(a) sprites and gigantic jets (b) elves TLE Number Elve 5434 (80.7%) (d) lightning (c) halos **Sprite** 633 (9.4%) Halo 657 (9.8%) $10^{-4.5}$ $10^{-4.0}$ $10^{-3.5}$ $10^{-3.0}$ $10^{-2.5}$ $10^{-2.0}$ $10^{-1.5}$ $10^{-1.0}$ $10^{-0.5}$ (#/yr/km²) a), b) c) from Chen et al. (2008). d) : from Christian et al., (2003). TLEs observed by ISUAL (July 2004- June 2007)

TAR


Terrestrial Gamma ray Flashes (TGFs)

TGF electrons

- Brief electron pulses: 2-10 ms
- About 1 e⁻/cm² spread over 50 km wide
- +/- along the magnetic field, coming from the Earth, and possibly reflected from the conjugate hemisphere
- Only 1 spacecraft with adequate performances
 - SAMPEX: 60 cm².ster, 20 ms

Expected counts during 10 ms: 50 max
 High energy limit, at least 4 MeV (10 MeV)

November 22, 2002

TAR/

Lat/Long:-2.65 N/166.95, L=4

Scientific objectives of TARANIS

To advance the physical understanding of the links between TLES, TGFs and environmental conditions (lightning activity, geomagnetic activity, atmosphere/ionosphere coupling, occurrence of Extensive Atmospheric Showers, etc).

To identify the signatures associated with these phenomena (electron beams, associated electromagnetic or/and electrostatic fields) and to provide inputs to test generation mechanisms.

To provide inputs for the modelling of the effects of TLEs, TGFs and bursts of precipitated and accelerated electrons (lightning induced electron precipitation, runaway electron beams) on the Earth's atmosphere.

TARANIS scientific payload

MEXIC (Multi Experiment Interface Controller)

- electronics equipment to power and to manage the whole scientific payload
- Alert management

MCP including MC (MicroCameras)

- a set of two cameras (a sprite camera and a lightning camera), and their associated analyzer, and PH (Photometers);
- a set of four photometers and their associated analyzer;

XGRE (X-ray, Gamma-ray and Relativistic Electron experiment)

• a set of three X and γ detectors and their associated analyzer;

IDEE (Instrument Détecteurs d'Electrons Energétiques)

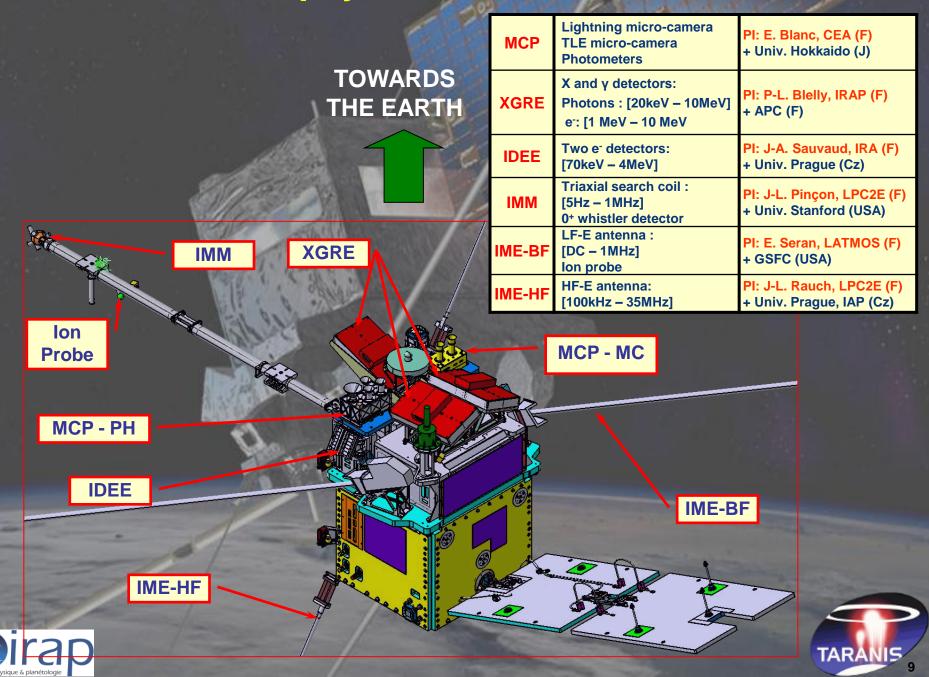
• two electron detectors with one analyzer per detector;

IMM (Instrument de Mesure du champ Magnétique)

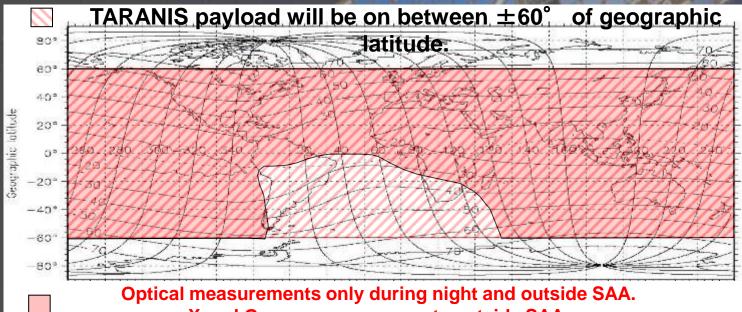
- a compound triaxial system of search-coil magnetometers to measure the alternative magnetic field in the low and medium frequency ranges and the medium frequency wave analyzer (electric and magnetic);
- IMM also includes a Sferics Detector (SD) to make on-board characterization of whistlers;

IME-BF (Instrument de Mesure du champ Electrique Basse Fréquence)

- a sensor to measure the electric field in the low frequency range and the low frequency wave analyzer (electric and magnetic);
- IME-BF also includes an Ion Probe (SI) to determine fluctuations of thermal plasma;


IME-HF (Instrument de Mesure du champ Electrique Haute Fréquence)

• a sensor to measure the electric field in the high frequency range and the associated high frequency wave analyzer;



Scientific payload accommodation

TARANIS: Event and Survey modes

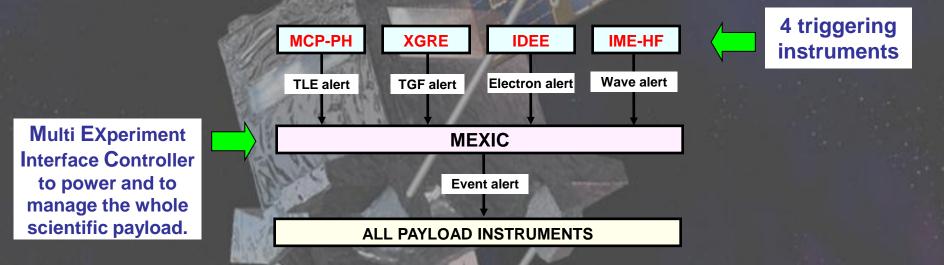
X and Gamma measurements outside SAA.

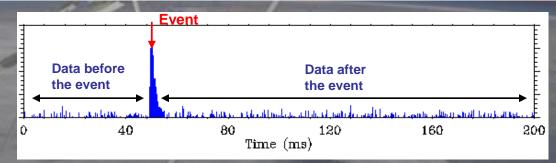
Survey data:

Continuous monitoring of the background conditions. **2 GB of low resolution data per day!**

Event data:

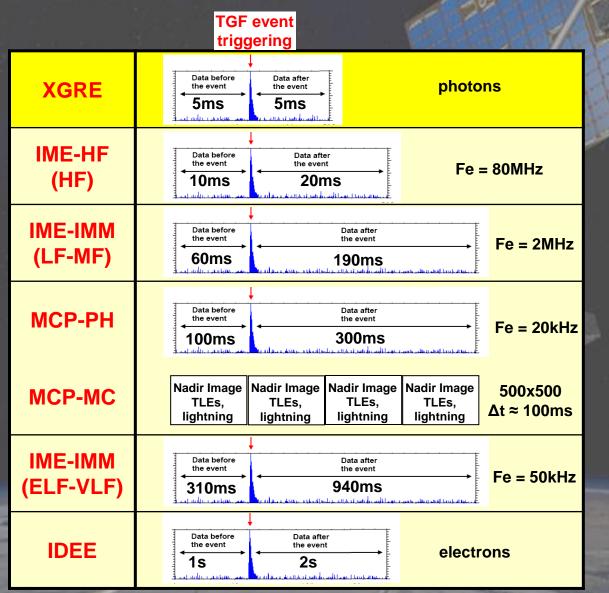
Triggered when a priority event is detected (TLE, TGF, electron beam, burst of electromagnetic/electrostatic waves), then all instruments record and transmit high resolution data.


2 GB of high resolution data per day!



TARANIS event data (1/2)

TARANIS Mass memory: 16 Gbits X-band telemetry: 16.8 Mbits/s 2 GBytes of event data per day - On average 12 events per half-orbit (T=100mn) - A maximum of 36 events per half-orbit



On-board analyzers will include event buffer memory sized to record high resolution data both before and after the trigger

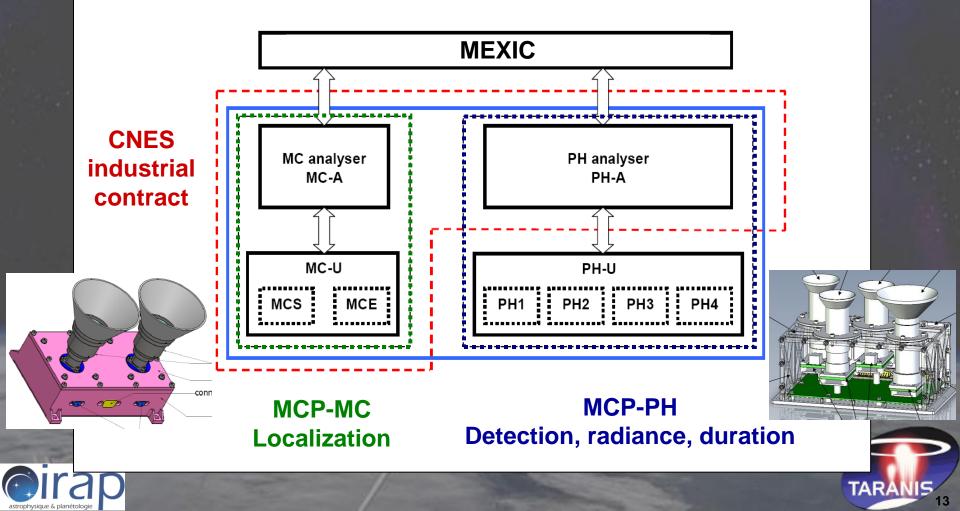
TARANIS event data (2/2)

Time stamping accuracy

Absolute accuracy:

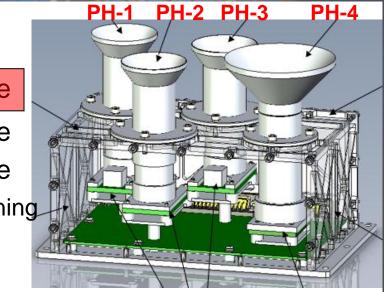
1 ms for comparison with ASIM, balloon, and ground based measurements.

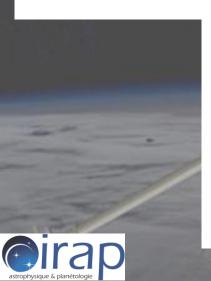
Relative accuracy:

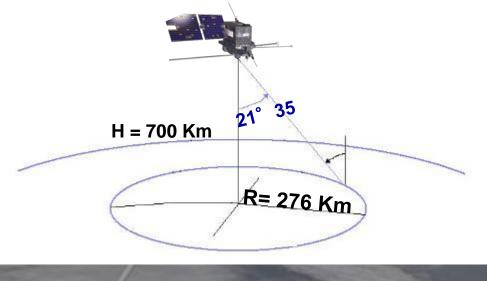

10 µs for comparison between TARANIS experiments.

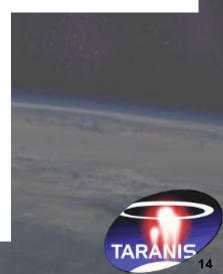
TARA

MCP: Instrument and team


MCP: PI E. Blanc (CEA) MCP-MC: E. Blanc and Th. Farges (CEA) MCP-PH: Lead Co-I M. Sato (Hokkaïdo Univ.)


MCP- PH Units


Spectral bands


• PH1: UV-C	150 - 280 nm	Sprite
• PH2: UV-A	337 ± 5 nm	Sprite
• PH3: NIR	761 ± 5 nm	Sprite
PH4: Red - NIR	600 – 900 nm	Lightning

Field Of View (FOV):
 PH1 – PH2 – PH3: "small" FOV (+/- 21° 35 ⇔ R= 276 Km)
 PH4 : "large" FOV (+/- 43° 4 ⇔ R= 700 Km)

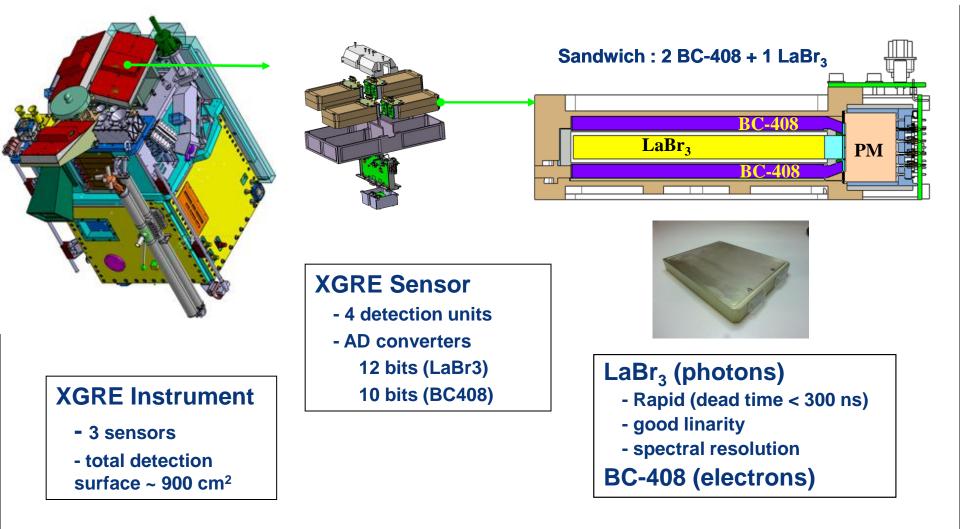
XGRE instrument requirements

Speed

- High count rate per cm² (10⁴ 10⁵ cm⁻² s⁻¹)
 - Dead time < 300 ns (10⁶ s⁻¹)
- Datation
 - triggers with 300 ns relative time accuracy
 - events (TGFs) with 1 µs relative time accuracy

Detection

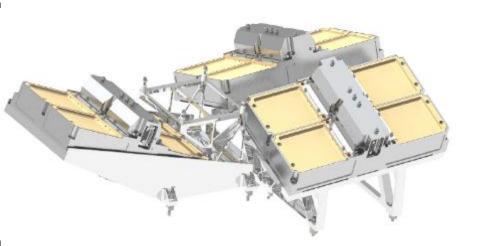
- Separation between γ-rays and electrons
- γ-rays
 - Energy range
 - 20 keV-12 MeV
 - 30 % accuracy at 20 keV
 - 9 % accuracy at 511 keV
- Electrons
 - Energy range
 - <1 MeV >10 MeV
- minimize risk of missing TGF
 - Storage capacity of 200 000 photons
 - burst and survey algorithms

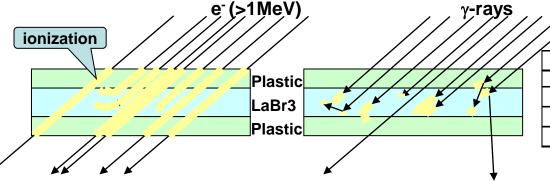

Localization

- Ascending or descending particle motion
- Zenithal and azimuthal direction (~30° resolution)

XGRE (PIs : P-L Blelly (IRAP) et F. Lebrun (APC))

Three sensors on the platform oriented towards Earth + 1 toward space.




XGRE (PIs : P-L Blelly (IRAP) et F. Lebrun (APC))

TGF localization - three planes (~20° inclination)

Separation between electrons and photons

photons électrons > 8 MeV <200 keV >200 keV couche < 1 MeV 1 - 8 MeV **BC-408** 0 Е ~ 1 MeV ~ 1 MeV 0 0 LaBr3 ~ E-1 MeV ~ 8 MeV Ε <u>≤ E</u> 0 0 0 **BC-408** 0 - E-9 MeV

-20

20

accuracy on the arrival direction

(100 photons)

60

40

20

0

-20

-40

-60

-60 - 40

degrees

60

40

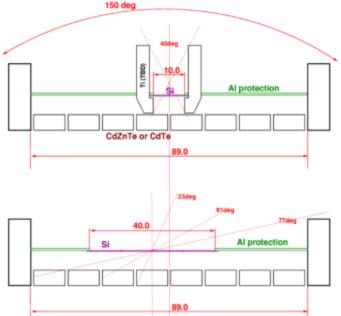
IDEE (PI : J-A Sauvaud (IRAP)

Silicium, 5 cells

CdTe, 64 cells

Arrival direction derived from the coincidence between Si and CdTe cells

- 2 spectrometers
 - nadir
 - zenith


Energy range

- 60 keV 5 MeV
- $\Delta E = 16 \text{ keV} [60 \text{ keV} 500 \text{ keV}]$
- $\Delta E = 60 \text{ keV} [500 \text{ keV} 5 \text{ MeV}]$

8 angles

Field of view = $150 \times 40^{\circ}$ [60 keV - 500 keV] Field of view = $150 \times 150^{\circ}$ [500 keV - 5 MeV]

IMM (PI : J-L PINCON (LPC2E)

Triaxial search coil magnetometer

2 mono band antennas
 * 10Hz-20kHz frequency range
 1 double-band antenna
 * 10Hz-20kHz and 10kHz-1MHz frequency range

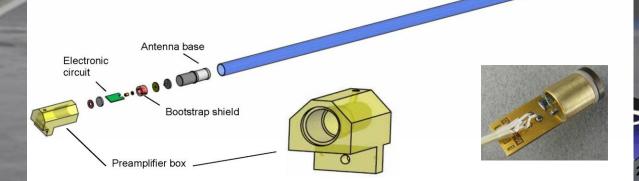
IME-BF (PI : E. SERAN (LATMOS))

Two sphere sensors on booms

- +1 component of the electric field
- + from DC to 3.3 MHz
- ULF frequency range: 0 64 Hz
- VLF frequency range from few Hz to 20 kHz,
 - frequency resolution: 94 Hz

Langmuir probe

- Current due to the ion/electron thermal plasma
- Plasma density range: 10²-10⁷ cm-3
- frequency: 128 Hz



IME-HF (PI : J-L Rauch (LPC2E)

Double-wire Hertz dipole * aligned with a satellite diagonal * on the opposite side of the solar panel 1 component of the electric field * from 100kHz to 30MHz

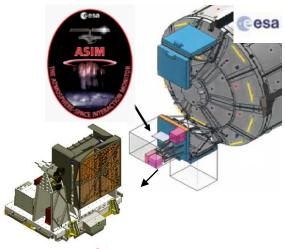
TARANIS STATUS

		Data access						
	Mission	Instrument	Instrument	Instrument	Guest	Public		
	PI	PI Lead Co-I Co-I		Co-l	Investigator	Public		
Raw Survey data	Yes	instrument	instrument Pl agreement required	No	No	No		
Raw Event data	Yes	instrument	instrument Pl agreement required	No	No	No		
Calibrated Survey data	Yes	Yes	Yes	instrument	CST agreement required	No		
Calibrated Event data	Yes	Yes	Yes	instrument	CST agreement required	No		
Quickview Survey	Yes	Yes	Yes	Quicklook + instrument	CST agreement required	Quicklook only		
Quickview Event	Yes	Yes	Yes	Quicklook + instrument	CST agreement required	No		
Plot Survey data	Yes	Yes	Yes	instrument	CST agreement required	No		
Plot Event data	Yes	Yes	Yes	instrument	CST agreement required	No		
Auxiliary data	Yes	Yes	Yes	Yes	Yes	No		

Launcher: SOYUZ

Launch from KOUROU by the end of 2015

TARANIS Planning


	20	11 2012	20 1	13 2014	2015	
Dira	Phase A &B	Phase C (Engineering	g model)	Phase D (Flight model)	AIT	
II C	V			Concession of the local division of the loca		TARANIS

astrophysique & planétologie

Context: TARANIS – ASIM – GLIMS – COBRAT and Chibis-M

Tool for the Analysis of RAdiation from lightNing and Sprites Launch: 2015 Polar orbit, altitude 700 km Optical - gamma-ray – energetic e⁻ & electromagnetic detectors Nadir Obs.

Atmosphere-Space Interaction Monitor Launch: 2014 ISS orbit, inclination = 51° Optical & gamma-ray detectors Nadir Obs.

Global Lightning and sprite MeasurementS Launch: end of 2012 ISS orbit, inclination = 51° Optical detectors Nadir Obs.

Chibis-M

Launch: 2012 inclination = 51.6° Altitude = 500 km Optical - gamma-ray energetic e⁻ & EM detectors Nadir Obs

Firefly ?

COBRAT

Coupled Observation from Balloons Related to ASIM and TARANIS

Long duration balloon flights for the study of high energy phenomena observed in the atmosphere above thunderstorms and their consequences for stratospheric chemistry

