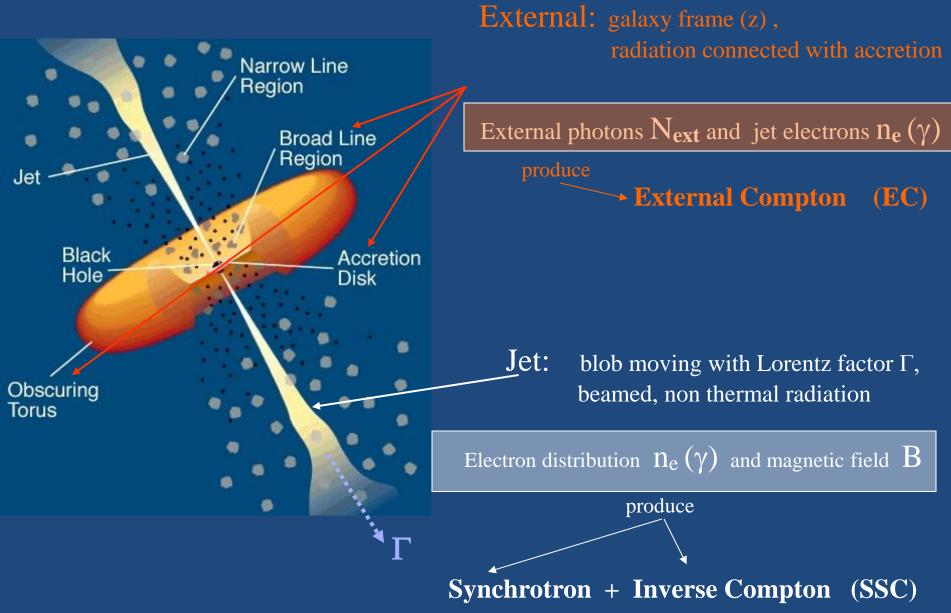


Name	Affiliation	
A. Bulgarelli	INAF-IASF Bologna	
A.W. Chen	INAF-IASF Milano	
I. Donnarumma	INAF-IASF Roma	
P. Giommi	ASDC Roma	
A. Giuliani	INAF-IASFMilano	
F. Longo	INFN Trieste	
C. Pittori	ASDC Roma	
L. Pacciani	INAF-IASF Roma	
G. Pucella	ENEA Roma	
E. Striani	INAF-IASF Roma	
S. Vercellone	INAF-IASF Palermo	
V. Vittorini	INAF-IASF Roma & Univ. Tor Vergata	

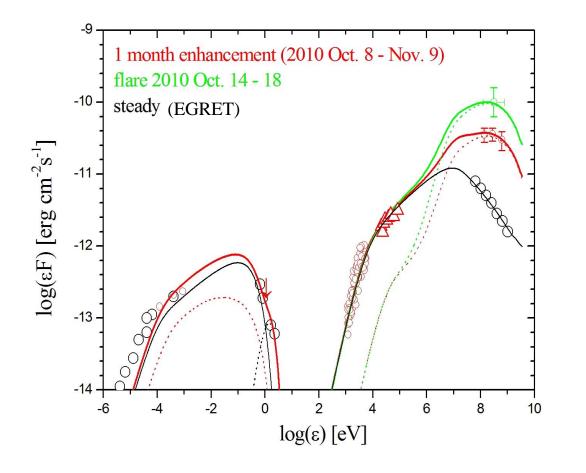
Inverse-Compton "mirror-flash" emissions in γ-rays: the remarkable cases of 3C 454.3 and PKS 1830-211 on late 2010

These challengig events show ratios between optical and γ-rays variation factors


 $\rho = A_{\gamma} / A_{opt} > 2$ or more.

Standard EC predicts $\rho = 1$

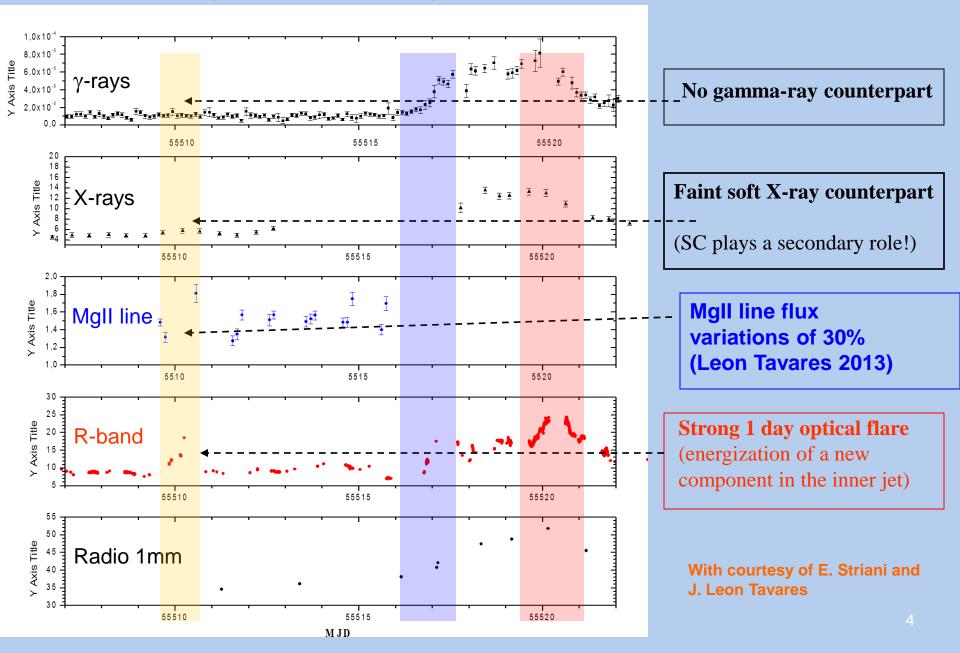
Moreover γ -flux shows doubling time of few hours in these events.


V.Vittorini, E. Striani, M. Tavani, A. Cavaliere, S. Vercellone on behalf of the AGILE AGN WG

FSRQ standard model

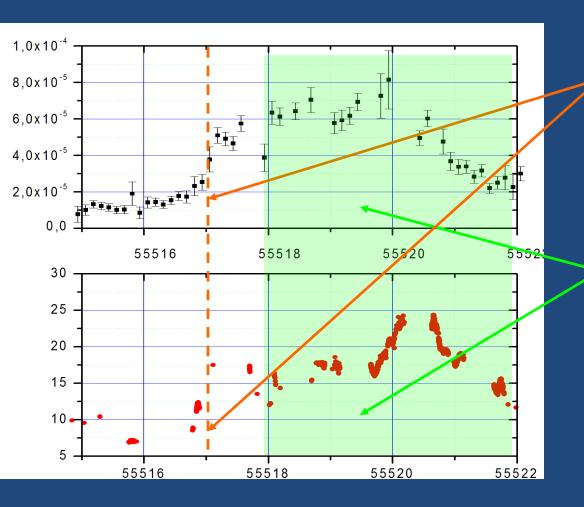
PKS 1830: an extreme instance

Orphan gamma-flare during a montly activity: Optical and X-ray remain at hystorical steady levels, and p=3


A second component of shocked particles (red dotted lines) can account for the **monthly enhancement** in gamma-rays with little or no contributions in optical and X-rays.

But the fast orphan flare $(A_{\gamma} = 3 \text{ on } 6 \text{ hours})$ around Oct. 14 would require some variation in the external field of seed photons !

Ciprini et al. 2010; Donnarumma et al. 2011


The November 2010 super flare of 3C 454

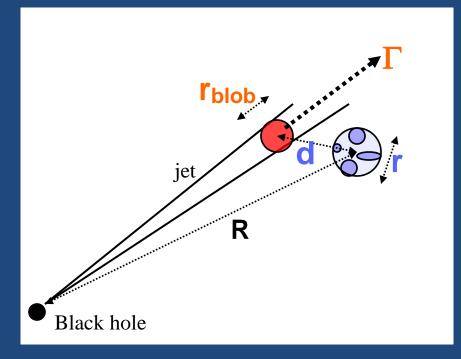
(Vercellone et al. 2011)

3C 454 November 2010

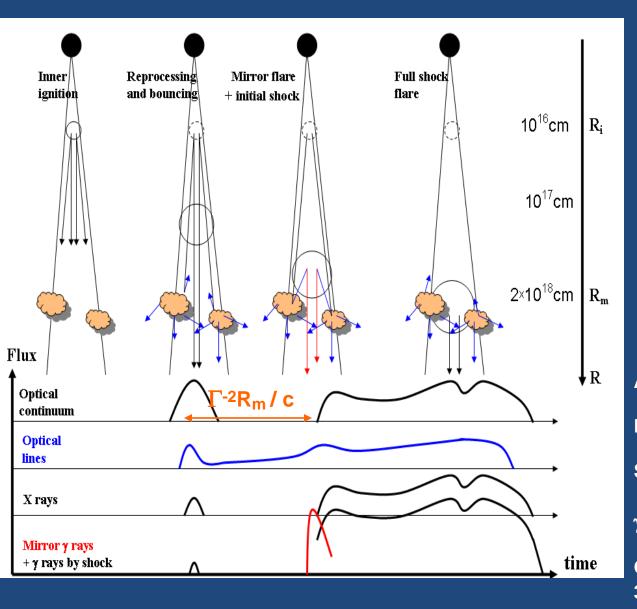
Around MJD=55517 the γ ray flux jumps by a factor $A_{\gamma} = 4 - 5$ while the optical flux rises by a factor $A_{opt} = 2$ only!

γ ray flux varies of 100% in 6 hours

Later on, variation factors appear to be comparable with $\rho=1$


To account for this complex correlation, some variations are required in the external photon field seen by the moving blob!

Wath happens when a scattering system crosses the jet trajectory at R<R_{BLR}?


In standard EC from BLR, clouds cover **a=10%** at distance R_{BLR} =3 10¹⁷cm, and reflect the disk luminosity L_D . The energy density of photons seen by a far blob moving with bulk Lorentz factor Γ is

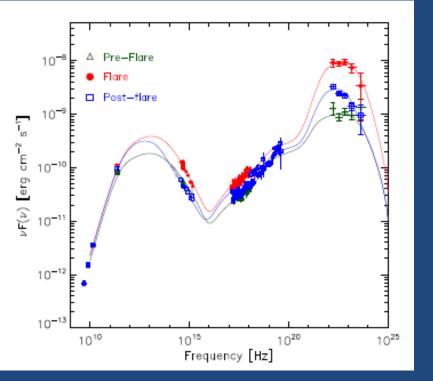
 $U'_{\rm BLR} \sim \frac{17}{12} \frac{aL_{\rm D}\Gamma^2}{4\pi R_{\rm PLD}^2 c}$

When the blob approaches at distance $d << R_{BLR}$ a system of size Γ , a gain $g=a^{-1}(\Gamma/2d)^2 < 3$ can be obtained, with time-scale $\Gamma^{-2}(\Gamma+\Gamma_{blob})/C$ and $U'_{loc} = U'_{BLR}(1+g)$

...and beyond the BLR?

 $U'_{MIR} = aL'_{syn}\Gamma^4 / (cd^2)$ = $U'_{BLR}(L_s/L_D)(R_{BLR}/\Gamma d)^2$

But causality constrain $d < R_m / (4\Gamma^2)$, then $U'_M > U'_{BLR}$ results for a crossing time


 $\Delta t_{obs} = (d+r)/(c\Gamma^2)$ Is the observed duration

 $t_{del} = d/(c\Gamma^2) = half hour$ Blob impact delay

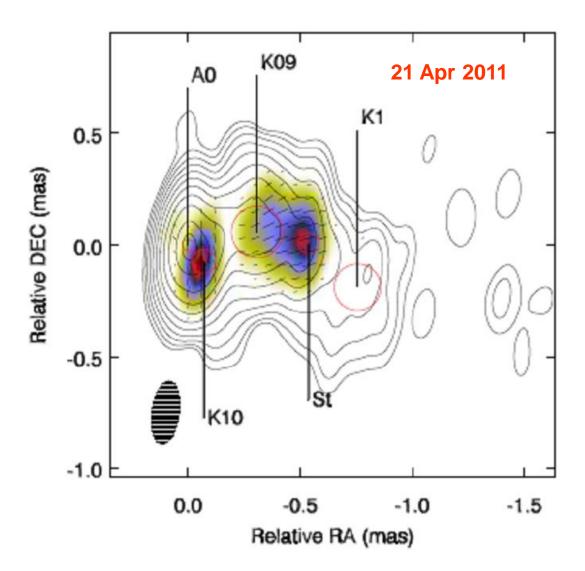
Adequate γ amplification Rise-time of few hours Shock delay of half hour γ -ray emitted at pc scale Optical precursor with 30% line enhancement

3C 454 in Nov. 2010

Vercellone et al. 2011

This idea explains the SED during the entire period of activity, by **two** electron populations in the jet

Parameter	Pre-flare	Flare	
		SEDs model parameters	
αı	2.35	2.35	
α_{h}	4.2	4.8	
γ_{min}	50	80	
ĩъ	650	700	
K	300	700	cm^{-3}
R_{blob}	7.0	3.6	$10^{16} {\rm cm}$
В	0.65	1.1	G
δ	34.5	34.5	
L_{d}	2	2	$10^{46}{ m ergs^{-1}}$
$T_{\rm d}$	104	104	$^{\circ}K$
$r_{\rm d}$	0.05	0.05	pc
θo	1.15	1.15	degrees
Г	20	20	



Two populations of electrons seem unavoidable.

Standard EC models are challenged! In fact, variations in the external photon field seen by the blob are required to understand the observed complex γ -ray vs. Opt. behavior. This also accounts for very fast γ variations of 100% in few hours.

Mirroring of the blob photons by scattering material accounts for γ -ray emission at pc scales: far from the BLR

Summary

The knot K10 emerges from the core **T=160** days after the flare (Jorstad et al. 2012).

With a jet opening angle 1.6° K10 traveled R_c=16 pc before being resolved.

For Γ =10 the predicted lag is T= $\Gamma^{-2}R_c/c=0.5$ years