

INFN: Firenze, Pisa, Pavia, Roma II, Trieste INAF: Roma, Bologna Milano

> Address all current front edge CR science tasks Challenging high performance instrument Complementarity to ground experiments

SUMMARY

THE PRESENT SITUATION POSSIBLE SCIENTIFIC PERSPECTIVES INSTRUMENT EVOLUTION REACH OF THE PROPOSED INSTRUMENT

ИВЕРЖДАЮ Директор Учреждения Российской академии наук Очического институт От F. F. J. Лебедева Р. H.	APPROVED the director of the tion of the Russian demy of Sciences ev Physical Institute an Mesyats G.A. THE GAMMA-400 PROJECT THE RESEARCH OF A COSMIC GAMMA RAYS AND ELECTRON+POSITRON FLUXES IN THE ENERGY RANGE OF 1–3000 GeV
От ФИАН	From LPI
Руководитель научного направления академик Буулу Гинзбург В.Л. 2009 г.	Director of scientific branch academician Ginzburg V.L.
Научный руководитель проекта ГАММА-400 профессор, г.н.с. Гальпер А.М. 21 2009 г.	Scientific director of the GAMMA-400 project professor Galper A.M.
Москва, 2009 г.	Moscow, 2009

Gamma-400 Approved mission by ROSCOSMOS Originally devoted Gamma rays study (30 GeV – 1 TeV) & high-energy electrons and positrons.

APPROVED by the decree of the Russian Government of December 28, 2012 No. 2594-R

Russian Government program "Russian Cosmic Activity in 2013–2020"

In project:

Making of three space observatories: "WSO-UV", "Spectrum-M" ("Millimetron") and "GAMMA-400" for the purpose of execution of research of astrophysical objects in various electromagnetic ranges and high energy gamma rays.

GAMMA-400 Workshop • May 2013

GAMMA-400 WILL BE INSTALLED ON SPACECRAFT "NAVIGATOR", MANUFACTURED BY LAVOCHKIN.

•Characteristics of the satellite:

- scientific payload > 2600 kg,
- power budget 2 kW,
- expected lifetime ≈ 10 years
- Pointing without earth occultation

The original GAMMA400 Instrument

Primary tasks of the project

- a) Study of the origin of the dark matter by means of gamma-ray astronomy;
- b) Precise measurements of discrete astrophysical sources in the Milky Way;
- c) Research of high energy gamma-ray bursts;
- d) Research of high energy e⁻e⁺-fluxes;
- e) Research of high energy light nuclei fluxes.

GAMMA-400 Workshop • May 2013

Launch foreseen by end 2018

- unique opportunity to configure the apparatus for :
- gamma-rays from 100 MeV < up to 300 GeV
- proton & nuclei in cosmic-rays up to the "knee"

electrons/positrons beyond TeV energy range

The collaboration

* Firenze, Pisa, Pavia, Roma2, Trieste =>=> PAMELA FERMI AGILE community

• At present:

- Russian, Italian, US collaboration
- Expressed interest from France, Spain and Sweden (KTH & OKC theorists and experimentalists)
- Current scientific interest from the TeV community (CTA, Hofmann)
- Ongoing contacts with the multi-wavelength community
- Open possible contribution and collaborations

Centenary Symposium 2012: Discovery of Cosmic Rays Denver, June 2012

Space Gamma-Ray Telescope GAMMA-400

A.M. Galper^{1,2}, O. Adriani³, R.L. Aptekar⁴, I.V. Arkhangelskaja², A.I. Arkhangelskiy², M. Boezio⁵, V. Bonvicini⁵, K.A. Boyarchuk⁵, Yu.V. Gusakov¹, M.I. Fradkin¹, V.A. Kachanov⁷, V.A. Kaplin², E.N. Korchagir P. Marrocchesi⁸, E.P. Mazets⁴, I.A. Mereminskiy², E. Mocchiutti⁵, A.A. Moiseev⁹, N. Mori³, I. Moskalenko¹⁰, P.Yu. Naumov², P. Papini³, P. Picozza¹¹, V.G. Rodin¹², M.F. Runtso², R. Sparvoli¹¹, P. Spillantini³ E. Vannuccini³, Yu.T. Yurkin², N. Zirakashvili¹⁴, V.G. Zverev²

 Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia;
National Research Nuclear University <u>MEPhI</u>, Moscow, Russia;
Istituto Nazionale di Fisica Nucleare, Sezione di Firenze and Physics Department of University of Florence, Florence, Italy:

⁴ Inffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia;

⁵ Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy;

⁶ Open Joint Stock Company "Research Institute for Electromechanics", Istra, Moscow region, Russia;

⁷ Institute for High Energy Physics, <u>Protvino</u>, Moscow region, Russia; ⁸ Istituto Nazionale di Fisica Nucleare, Sezione di Pisa and Physics Department of University os Siena, a Siena, Italy:

- Siena, Italy; ⁹ NASA Goddard Space Flight Center and CRESST/University of Maryland, Maryland, USA; ¹⁰ Hansen Experimental Physics Laboratory and Kavii Institute for Particle Astrophysics and Cosmology
- Stanford University, Stanford, USA; ¹¹ Istituto Nazionale di Fisica Nucleare, Sezione di Roma 2 and Physics Department of University of Rome

"istituto Nazionale di Fisica Nucleare, Sezione di Roma 2 and Physics Department of University of R "Tor Vergata", Rome, Italy; ¹³ Istituto Nazionale di Astrofisica – IA: Rome, Italy.
¹⁴ Pushkov Institute of Terrestrial Magn Moscow region, Russia;
¹⁵ Lavochkin Association, Khimki, Mos

12 Space Research Institute, Russian A

Abstract

The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV - 3 TeV is presented. GAMMA-400 will be installed on the Navigator space service

Physical diagram of the GAMMA-400 scientific equipment

AC - anticoincidence detectors (AC top , AC lat)

- C Converter-Tracker total 1 Xo 8 layers W 0.1 Xo +Si (x,y) (pitch 0.1mm) 2 Si(x,y) no W
- S1, S2 TOF detectors
- S3, S4 calorimeter scintillator detectors
- CC1 imaging calorimeter (2Xo) 2 layers: Csl(Tl) 1Xo + Si(x,y) (pitch 0.5 mm)
- CC2 electromagnetic calorimeter Csl(Tl) 23 Xo 3.6x3.6x3.6 cm³ - 28x28x12-9408 crystals
- LD 4 lateral calorimeter detectors
- ND neutron detector

Comparison between characteristics of existing and planned gamma-ray telescopes

	space ga	mma-ray t	telescopes	ground gamma-ray telescopes				
	Fermi	AMS-2	GAMMA-400	H.E.S.SII	MAGIC	СТА		
energy range [GeV]	0.02–300	10-1000	0.1-3000	> 30	> 50	> 20		
acceptance [m ² sr]	2.4	0.4	1.2	0.01	0.01	0.1		
effective area [m²]	0.8	0.2	0.6	10 ⁵	10 5	10 ⁶		
angular resolution (E _y > 100 GeV)	0.2	1.0	< 0.02	0.07	0.05	0.06		
energy resolution (E _y > 100 GeV)	10%	3%	1-2%	15%	15%	10%		
	• •	GAMMA-400	Workshop • May	v 2013		14		

GAMMA400 possible evolution

- 1. Study p and nuclei spectra up to the "knee" $10^{14} 10^{15}$ eV
 - Calorimeter of new conception (39 X₀), high L&T granularity, homogeneous and isotropic, with optimal energy resolution and particle discrimination
 - Electron/positron detection up to TeV energies
 - Nuclei detection up to 10¹⁵ eV energies
- 2. Gamma detection capability extension to the 30 300 MeV region, to reach a detection band of 30 MeV- 300GeV.
 - breakthrough angular resolution, at 1 GeV 3-4 times better than existing expt.
 - improved *sensitivity* by a factor of 5 -10 in the energy range 30 MeV–10 GeV;

(a combination of: effective area, Point Spread Function, and pointing strategy)

Composition: ca. 90% protons, 10% helium, heavier ions and "electrons", only 0.01% photons, neutrinos?

- Energy spectrum: power law with some features
- What are the sources of these cosmic rays?
- How are they produced?
- How are they accelerated?

cosmic rays

General Agreement between instruments

G-400: Present vs. Possible New Design

Possible evolution

-10 tracker planes and -28x28x12 Csl cubes in the homogeneous calorimeter with sampling calo at the top and 4 sides.

- Tracker: 25 planes with Tungsten;

- Calorimeter: 26x26x19 Csl cubes of 3.6 cm with gap 0.3 cm (i.e, 50.32 and 36.77 X0 in horizontal and verticaldirection respectively).

Possible evolution

10 tracker planesand 28x28x12 Csl cubes in the homogeneous calorimeter with sampling calo at the top and 4 sides.

- Tracker: 25 planes with Tungsten;

- Calorimeter: 26x26x19 Csl cubes of 3.6 cm with gap 0.3 cm (i.e, 50.32 and 36.77 X0 in horizontal and vertical direction respectively).

GAMMA400 a "dual" instrument:

state-of-the-art imaging Silicon Tracker

very deep homogeneous and isotropic calorimeter, with large acceptance, excellent granularity in all directions and energy resolution;

Gamma-rays from 30 MeV up to 300 GeV to

be studied with substantial improvements concerning the angular and energy resolution, the broad-band sensitivity, and the continuous exposure of sources without Earth occultation;

Proton/nuclei cosmic-rays up to the"knee", whose spectrum and composition is to be studied with unprecedented detail up to 1 PeV/nucleon

Electrons/positrons in the TeV energy range and beyond,

to be measured with much improved sensitivity compared with current space, balloon-borne, and ground measurements.

No Earth occultation

pointing strategy with a very large exposure per unit time for extended monitoring (months) of individual sources;

Excellent Pointing Capabilities

- angular 0.2 degrees and
- energy resolution 1%, at 1 GeV,
- best sensitivity in the 30 MeV 300 GeV,

it allows to resolve the diffuse emission and the ultimate search for Dark Matter.

Gamma-400: a multi-purpose mission Important points

Addresses some of the most fundamental scientific tasks

- The GAMMA-400 homogeneous and isotropic calorimeter design gives unique energy resolution and depth for electrons&nuclei. The Gamma-400 proposed tracker is an evolution of AGILE and FERMI-LAT
 - search for DM,
 - origin of galactic CR,
 - CR acceleration mechanism(s),
 - studies of galactic and extragalactic gamma-ray sources
 - Galactic center
 - photons also @ low energy;
 - pointing strategy without Earth occultation.

TRACKER

no. of tower = $2x^2$ no. of plane = 25(plane => W-Kap-Cu-Si-Gap-Si-Cu-Kap-AlSupport) W = 0.013 cm Kap = 0.005 cm Cu = 0.001 cm Planes gap = 2.5 cm no. of tile = 6x6tile dim = $9.5 \times 9.5 \times 0.03$ cm³ gap = 0.1tot dim = 115.7x115.7x72.12 cm^3 tot dim with frame = 116.5x116.5x72.12

INFN

Tracker Parameters influencing the PSF

In the current configuration of Silicon-Trackers (based on AGILE & Fermi-LAT experience), the parameters that mainly affect the angular resolution are:

- 1. the converter thickness X_0 per plane;
- 2. the spacing between the planes (D);
- 3. the Si micro-strip pitch and thickness;
- 4. the readout system;
- 5. filtering, event topology, noise;

Readout mode - AGILE pre-flight calibrations (Prest M., et al., 2002)

Possible Tracker configuration

Baseline 25 planes:

- 4 towers
- 25 planes,
 - each plane 2 array (view) of the silicon tiles
- Tungsten converter with < 3% of X0
- Silicon microstrip, **120** micron pitch, analog readout
- CLUSTER POSITIONING: energy-weighted
- ANALOG READOUT
- READ OUT PITCH: 240 Microns
- Option-1 > 25 planes
 - Reduced/no Tungsten converter
 - > 25 planes
 - Iever arm + Si thickness optimization

G-400 SIMULATED PERFORMANCE work in progress PSF Effective Area

10000

1000

100

10

Effectîve Area (cm²)

G-400: (red solid line) Fermi (black dotted: upper LAT, PASS7) Fermi (blue dotted : total LAT, PASS7) G-400: 120x120 cm²(red solid line) G-400: 100x100 cm² (red dotted line) . Fermi (black dotted: total LAT, PASS7) Fermi (blue dotted: upper LAT, PASS7)

103

Energy (MeV)

104

105

101

 10^{2}

G-400 sensitivity 30-day observation – Fermi exp. Eff=50% (E.occultation) Galactic Centre

G-400: 120x120 cm²(red solid line) ; G-400: 100x100 cm² (red dotted line) . Fermi (black dotted: total LAT, PASS7); Fermi (blue dotted: upper LAT, PASS7) A. Vacchi AGILE 11th Science Workshop May 16-17, 2013

G-400 sensitivity 30-day observation – Fermi exp. eff=1/6 (sky-scanning) Galactic Centre

Sensitivity – 30 days

INFN

Silicon Array

CALORIMETER: no. of tower = 1 no. of crystals = 20x20x19crystal (Csl cube) = 3.6 cm each side gap = 0.4 cm tot dim = 80x80x76 cm³ tot dim w frame = 80.6x80.6x80.6 cm³

Basic idea Small Csl(Ta) cubic crystals, cubic homogeneous calorimeter

- Homogeneous calorimeter
- Completely symmetric, to maximize the Geometric Factor
- Finely segmented in every direction
- Gaps in between crystals to increase GF
- Total weight < 1600 kg</p>
- Very high dynamic range

This type of photodiode have 9,2x9,2 mm² active area and quantum efficiency at 550 nm is about 0,65, bias voltage 45V².

Gamma-400: Calorimeter Geometry

- Homogeneous calorimeter
- Symmetric, to maximize the Geometric Factor: 100×100×52 cm³ (50X₀×50X₀×26X₀)
- Total weight ~ 1800 kg
- Very high dynamic range
- Finely segmented in every direction

 $\begin{array}{l} 1 \ R_M \times 1 \ R_M \times 1 \ R_M \ \text{small} \\ \textbf{CSI crystals, cubic shape} \end{array}$

Few mm gap between crystals

The chosen configuration: CsI(TI) ~1600 kg

	Cubes
N×N×N	20×20×20
L (cm)	3.6*
Crystal volume (cm ³)	46.7
G (cm)	0.3
Mass (Kg)	1683
N.Crystals	8000
Size (cm ³)	78.0×78.0×78.0
Depth (R.L.) " (I.L.)	39×39×39 1.8×1.8×1.8
Planar GF (m²sr) (fiducial**)	1.72×1.72×1.72

(* one Moliere radius)

(** on the 3 sides within a reduced perimeter of size (N-1)*L)

DRS4 + SiPM = Cerenkov

The DRS4 is high speed digitizer developed at PSI for high precision timing. It includes 8 channels sampling and storing 1024 cells each.

It has been used extensively in MEG (Mu to EGamma).

Sampling frequnecy 0.5 – 6 GPS Bandwidth ~ 1GHz Consumption 40 mW/ch Cost 83 euro/ch

Optimal for discriminating fast Cherenkov light from slow scintillating light

For more info: http://drs.web.psi.ch/

DRS4 evaluation board: 4 channels (2048 sample depth)

DRS4 can be operated from VME crate or stand alone with the DRS4 evaluation board

Overall Geometric Factor: 5 x (1.72 m²s sr) = 8.5 m² sr

- For electrons with selection criteria allowing an efficiency of 33% :
 - resolution1%.
 - GF 8.5 x 0.33 = 2.84 m^2 sr
- For protons allowing for an adapted shower development and containment:
 - •Efficiency 44% corresponding to an effective GF3.75 m^2 sr
 - In absence of software and hardware compensation the energy resolution for protons is of about 33%. By applying those compensations simulations indicates that 16% is reachable.

•Rejection power for protons to select electrons is >10⁵ simulation work is ongoing.

80x80 Calorimeter resolution: Protons (1 TeV) GF=8.5 m² sr & GF_{eff} = 3.75 m² sr $\Delta E/E$ 16%

Calorimeter resolution: Electrons (1 TeV) 0.7%

Electrons from every direction (2π) , traversing the top calorimeter surface, with contained shower maximum

5/17/13

Calorimeter resolution: Photons (100 GeV) 0.8%

Gamma rays traversing the top detectors (AC) and the top calorimeter surface, with contained shower maximum

5/17/13

Calorimeter summary

	l	Electror	າຣ	Gamı	ma rays		Protons			
Geometry	E (TeV)	GF _{eff} (m²sr) (top)	<u>σ(E)</u> Ε	E (TeV)	<u>σ(E)</u> Ε	E (TeV)	GF _{eff} (m²sr) (tot)	<u>σ(E)</u> Ε		
Csl 20×20×20 (3.6+0.5)cm	1	0.573	0.69%	0.1	0.87%	1	3.75	16%		

Counts estimation, electrons

G400 configuration: CsI(TI), 20x20x20 crystals Size: 78.0x78.0x78.0 cm³ – gap Taking into account: geometrical factor and exp. duratic selection efficiency 80%

Experiment	Dura tion	Planar GF (m² sr)	Calo σ (E)/E	Calo depth	e/p rejection factor	E > 0.5 TeV	E > 1 TeV	E > 2 TeV	E > 4 TeV		
CALET	5 y	0,12	~2%	30 X ₀	10 ⁵	3193	611	95	10		
AMS02	10 y	0,5**	~2%	16 X ₀	10 ^{3 **}	26606	5091	794	84		
ATIC	30 d	0,25	~2%	18 X ₀	10 ⁴	109	21	3	0		
FERMI	10 y	1,6@300 GeV * 0,6@800 GeV *	~15%	8,6 X ₀	104	59864	2545	0	0		
G400	10 y	8,5	~0,9%	39 X ₀	10 ⁶	452303	86540	13502	1436		
* efficiencies indi	* efficienčies indiaded ** calorimeter standalone A. Vacchi AGILE 11th Science Workshop May 16-17, 2013 49										

Counts estimation, protons and helium nuclei

Polygonato model G400 configuration: CsI(TI), 20x20x20 crystals Size: 78.0x78.0x78.0 cm³ – gap 0.3 cm Taking into account: geometrical factor and exp. duration + selection efficiency 80%

~ knee

		Planar	ε sel		E > 0.1 PeV		E > 0.5 PeV		E > 1 PeV		E > 2 PeV		E > 4 PeV											
Experime nt	Durati on	GF (m² sr)	ε CONV	Calo σ (E)/E	Calo depth	p	Не	р	He	р	Не	р	Не	p	He									
CALET	5 y	0,12	0,8	~40%	30 Χ ₀ 1,3 λ ₀	146	138	9	10	2	3	1	1	0	0									
			0,5																					
CREAM	180 d	0,43	0,0	~45%	20 Χ ₀ 1 2 λ.	41	39	3	3	1	1	0	0	0	0									
			0,4 CT*		1,2 70																			
	20 4	0.05	0,8	270/	18 Χ ₀ 1,6 λ ₀	18 X ₀	F	_	0		0													
AIIC	30 a	0,25	0,5 CT*	~37%		5	5	U	U	U	U	U	U	U	U									
G400	10 v	8 5	0,8	~17%	39 X ₀	10504	15624	979	1083	261	326	60	02	10	21									
6400	юу	0,0	0,4	~ 7 /0	1,8 λ ₀	10521	15024	515	1005	201	520	00	52	10	21									

* carbon target

Counts estimation, heavier nuclei $(3 \le Z \le 24)$

Polygonato model G400 configuration: CsI(TI), 20x20x20 crystals Size: 78.0x78.0x78.0 cm³ – gap 0.3 cm Taking into account: geometrical factor and exp. duration + selection efficiency 80%

		Planar	εsel			E > 0.	1 PeV	E > 0.	5 PeV	E > 1	PeV	E > 2	2 PeV	E > 4	· PeV
Experime nt	Durati on	GF (m² sr)	ε conv	Calo σ (E)/E	Calo depth	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr	³ Li to ⁹ F	¹⁰ Ne to ²⁴ Cr
CALET	5 y	0,12	0,8 0,5	~30%	30 Χ ₀ 1,3 λ ₀	68	70	5	5	1	2	0	1	0	0
CREAM	180 d	0,46	0,8 0,4 CT*	~45% **	20 Χ ₀ 1,2 λ ₀	21	21	1	1	0	0	0	0	0	0
ATIC	30 d	0,25	0,8 0,5 CT*	~37%	18 Χ ₀ 1,6 λ ₀	2	2	0	0	0	0	0	0	0	0
TRACER	30 d	5	0,8 -	TRD	TRD	93	96	6	7	2	2	1	1	0	0
G400	10 y	8,5	0,8 0,4	~17%	39 Χ ₀ 1,8 λ ₀	7698	7910	533	555	169	180	51	60	15	17

*carbon target

** better than 20% using TRD

~ knee

Comparison to other experiments, electrons How better is GAMMA400?

G400 configuration: CsI(TI), 20x20x20 crystals Size: 78.0x78.0x78.0 cm³ – gap 0.3 cm Taking into account: geometrical factor and exp. duration + selection efficiency 80%

Experiment	Duration	Planar GF (m² sr)	Calo σ (E)/E	Calo depth	Statistics (>1 TeV)
CALET	1,4	16	2,2	1,3	142
AMS02	1	20	2,2	2,3	17
ATIC	122	20	2,2	2,2	4120
FERMI	1	1,2@300 GeV 3@800 GeV	16,6	4,5	34

* efficiencies included

DM Indirect search with gamma-ray

- Ground-based Imaging Atmospheric Cherenkov telescopes
 - MAGIC, HESS, VERITAS, CTA, ...
 - sensitive to γ's from 50 GeV 50 TeV (>100 TeV for CTA)
- Gamma-ray space telescopes
 - EGRET, AGILE, FERMI/LAT,
 - GAMMA-400, ...
 - sensitive to γ 's 30 MeV 300 GeV, excellent pointing, mapping capability
 - Signature: Mono-energetic γ-line from direct annihilation or continuum through annihilation into intermediate states
 - search in galactic dark matter halo, dwarf galaxies, galaxy clusters, galactic dark matter satellites, ...

Scientific goals: high-energy ys

No other planned space experiment active for mid-2020 when many other facilities/observatories will be operating from radio to TeV will have gamma-ray capability.

• G-400 will point to specific targets but with a large FOV:

- 2.5 sr, i.e., 1/5 of the whole sky e.g.,
 - Galactic plane and Center,
 - SNRs;
 - DM candidates;

• G-400 is complementary to TeV instruments

- Many problems need to be solved by joint GeV and TeV observations (e.g., CR origin in SNRs and propagation).
- The international community is showing great interest in G-400.
- Explicit synergy with CTA

Concluding

G-400 will address crucial scientific problems

- G-400 will have optimal angular and energy resolution and statistics to address
 - 1. Fundamental physics (Dark Matter searches)
 - 2. Cosmic-Ray origin, propagation and detection up to the knee.
 - 3. High-energy Astrophysics
 - 4. Galactic-center

