Updating on the CRAB Nebula

E. Striani, INAF-IAPS, University of Rome Tor Vergata (on behalf of the AGILE team)

11th AGILE Science Workshop 16 May 2013

The CRAB

- P = 33 ms
- $L_{PSR} = 5 \cdot 10^{38} \text{erg/s}$
- $\dot{n} = 10^{40} e^+ e^-/s$
- Wave/particle output energizing the whole system
- The MHD pulsar wind interacts with environment through a sequence of "shocks" (~ 10¹⁷cm ≅ 0.1 pc)
 – "Diffusive Shock Acceleration"
 - 2 main populations of accelerated electrons/ positrons
- Model from optical to gamma-rays: Synch with $B = 200 \ \mu G$ (Nebula)

Chandra imaging of the inner nebula of the Crab

Crab Nebula spectrum

Crab Nebula spectrum

Unpulsed (nebular) gamma-ray spectrum

(Abdo et al 2010)

The Crab Nebula

1. Stable (Standard candle)

2. Cut-off in the spectrum around 150 MeV

The Discovery

CRAB Nebula Flare (Tavani et al. 2010, Science)

Overview of the main gamma-ray flares

Table of the flares (flux > $7 \cdot 10^{-6}$ ph cm⁻²s⁻¹) of the Crab Nebula found in the AGILE and Fermi data

Striani et al., ApJ 2013

	Name	MJD	τ_1 (hr)	τ_2 (hr)	Peak Flux	B (mG)	γ* (10 ⁹)	l (10 ¹⁵ cm)
2007 (AGILE)	F_1 F_2 F_3	54381.5 54382.5 54383.7	22 ± 11 14 ± 7 11 ± 5	10 ± 5 6 ± 3 14 ± 7	1000 ± 150 1400 ± 200 900 ± 150	1.0–2.0 1.1–2.1 1.0–2.0	2.6-4.8 2.3-4.3 2.6-4.8	1.2–3.6 0.8–2.2 0.8–1.7
2009 (Fermi)	F_4 F_5	54865.8 54869.2	$\begin{array}{c} 10\pm5\\ 10\pm5 \end{array}$	$\begin{array}{c} 20\pm10\\ 22\pm11 \end{array}$	$\begin{array}{c} 700 \pm 140 \\ 830 \pm 90 \end{array}$	0.7–1.3 0.8–1.4	2.6–4.8 2.6–4.8	0.6–1.6 0.6–1.6
2010 (<i>AGILE</i> and <i>Fermi</i>)	F_6 F_7 F_8	55457.8 55459.8 55461.9	8 ± 4 6 ± 3 19 ± 10	22 ± 11 6 ± 3 8 ± 4	850 ± 130 1000 ± 100 750 ± 110	0.7–1.3 1.4–2.6 0.8–1.4	2.5-4.7 2.6-4.8 2.5-4.8	0.5–1.3 0.3–0.9 0.9–3.1
2011 (<i>Fermi</i> and <i>AGILE</i>)	F_9 F_{10}	55665.0 55667.3	$9 \pm 5 \\ 10 \pm 5$	$\begin{array}{c}9\pm5\\24\pm12\end{array}$	1480 ± 80 2200 ± 85	1.2–2.2 1.3–2.3	2.8–5.0 2.7–4.9	0.5–1.5 0.6–1.6

The *Flares* ($F \ge 700 \times 10^{-8}$ ph cm⁻² s⁻¹) of the Crab Nebula Found in the *AGILE* and *Fermi* Data from 2007 September

Table of the flares (flux > $7 \cdot 10^{-6}$ ph cm⁻²s⁻¹) of the Crab Nebula found in the AGILE and Fermi data

Striani et al., ApJ 2013

	Name	MJD	τ_1 (hr)	τ_2 (hr)	Peak Flux	<i>B</i> (mG)	$\gamma^{*} (10^{9})$	l (10 ¹⁵ cm)
2007 (AGILE)	$F_1 \\ F_2 \\ F_3$	54381.5 54382.5 54383.7	22 ± 11 14 ± 7 11 ± 5	10 ± 5 6 ± 3 14 ± 7	1000 ± 150 1400 ± 200 900 ± 150	1.0–2.0 1.1–2.1 1.0–2.0	2.6-4.8 2.3-4.3 2.6-4.8	1.2–3.6 0.8–2.2 0.8–1.7
2009 (Fermi)	F_4 F_5	54865.8 54869.2	$\begin{array}{c} 10\pm5\\ 10\pm5\end{array}$	20 ± 10 22 ± 11	$700 \pm 140 \\ 830 \pm 90$	0.7–1.3 0.8–1.4	2.6–4.8 2.6–4.8	0.6–1.6 0.6–1.6
2010 (AGILE and Fermi)	F_6 F_7 F_8	55457.8 55459.8 55461.9	8 ± 4 6 ± 3 19 ± 10	22 ± 11 6 ± 3 8 ± 4	850 ± 130 1000 ± 100 750 ± 110	0.7–1.3 1.4–2.6 0.8–1.4	2.5-4.7 2.6-4.8 2.5-4.8	0.5–1.3 0.3–0.9 0.9–3.1
2011 (<i>Fermi</i> and <i>AGILE</i>)	F_9 F_{10}	55665.0 55667.3	$\begin{array}{c} 9\pm5\\ 10\pm5\end{array}$	9 ± 5 24 ± 12	1480 ± 80 2200 ± 85	1.2–2.2 1.3–2.3	2.8–5.0 2.7–4.9	0.5–1.5 0.6–1.6

The *Flares* ($F \ge 700 \times 10^{-8}$ ph cm⁻² s⁻¹) of the Crab Nebula Found in the *AGILE* and *Fermi* Data from 2007 September

AGILE 1-day bin lightcurve of the 2007 event

Fermi-LAT 2 day bin lightcurve above 100 MeV of the Crab (4 years)

Plot of the χ^2 values as a function of time

Most prominent wave episodes in the Fermi-LAT data

Striani et al., ApJ 2013

Gamma-ray 2-day binned lightcurve (Fermi data)

The *Waves* above 5σ (Pre-trial) from the Crab Average Emission Found in the *AGILE* and *Fermi* Data

Name	MJD	Duration (days)	τ ₁ (days)	τ_2 (days)	Average Flux $(10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1})$	Peak Flux $(10^{-8} \text{ ph cm}^{-2} \text{ s}^{-1})$	Pre-trial <i>p</i> -value	Post-trial Significance
W_1	54368-54373	5	2 ± 1	2 ± 1	440 ± 40	670 ± 200	$4.5 imes 10^{-8}$	5.0
W_2	54376.5-54382.5	6	2 ± 1	2 ± 1	480 ± 40	760 ± 140	$3.0 imes 10^{-9}$	5.5
f^*	54980.0-54986	6	1 ± 0.5	2 ± 1	470 ± 35	380 ± 40	$8.0 imes 10^{-7}$	4.2
W3	54990-55008	18	5 ± 2	10 ± 5	352 ± 9	380 ± 30	$1.0 imes 10^{-8}$	4.6
W_4	55010-55025	15	3 ± 1	6±3	326 ± 10	360 ± 30	$4.6 imes 10^{-7}$	3.8
W5	55358-55362	4	2 ± 1	2 ± 1	426 ± 27	430 ± 30	5.6×10^{-7}	3.7
W ₆	55988-56000	12	5 ± 2	3 ± 1	367 ± 12	435 ± 35	$1.8 imes 10^{-12}$	6.2
W7	56108-56114	6	3 ± 1	3 ± 1	431 ± 22	450 ± 30	$1.9 imes 10^{-9}$	5.9

The Waves above 50 (Pre-trial) from the Crab Average Emission Found in the AGILE and Fermi Data

Waves: $B \sim 0.5 - 1 \text{ mG}$ (Flares: $B \sim 1 - 3 \text{ mG}$)

The Crab

• A standard candle

The Crab

• A standard candle

 Strong and impulsive flares (12-24 hr), ~1/year

The Crab

• A standard candle

 Strong and impulsive flares (12-24 hr), ~1/year

 Slower, less intense variability, and rather more frequent (waves)

Modelling of the April 2011 super-flare

The average Chandra image 2011 (M. Weisskopf, 2012) April

•No smoking gun

60

•No apparent relation between X-ray and gamma emission

 Mono-energetic (relativ. Maxwellian) distribution is favored

martin 25-May-2012 12:30

already several models, many ideas...

- Tavani et al. (2011, 2012)
- Abdo et al. (2011, 2012)
- Bednarek & Idec (2011)
- Komissarov & Lyutikov (2011)
- Vittorini et al., Striani et al. (2011)
- Lyutikov, Balsara, Matthews (2011)
- Bykov, Pavlov, Artemyev, Uvanov (2011)
- Cerutti, Uzdensky, Begelman (2012)
- Arons (2012)
- Lyubarsky (2012)
- Sturrock & Aschwanden (2012)
- Kommissarov (2012)
- Blandford & Li (2012)
- Mignone et al. (2012, in prep.)
- Striani el al. (2012, in prep.)

Among the interpretations there is the possible role of impulsive particle acceleration in magnetic field reconnection by transient electric fields violating the condition E/B < 1

Several regions can be considered for the flaring particle acceleration site including the South-East jet

Conclusions

- Five major flares from the Crab Nebula, that challenged previous theoretical models of particle acceleration in PWN
- Evidence for 2 types of enhanced emission, fast (flares) and slow ("waves")
- Gamma-ray continuous monitoring of the Crab is really crucial: flares discovered because of this capability by AGILE and Fermi

Thank You