The Square Kilometre Array and the radio/gamma-ray connection toward the SKA era

Marcello Giroletti INAF Istituto di Radioastronomia

12th AGILE Workshop Roma, 8/5/2014

- What's in this talk:
 - SKA basics and quick history
 - Pathfinders and precursors: quick description and science overview
 - SKA details & synergy with high energy instruments
- What's not in this talk:
 - details on politics
 - details on technology

SKA: the Square Kilometer Array

- total collecting area of 1,000,000 m²: the largest radio telescope array ever constructed
- conceived in the 1990's, will become operational in
 2020+
- members from 10+1 countries representing >40% of world population
- HQ in UK, instrument split between South Africa and Australia

Italy is one of the founding members of the SKA organization

SKA challenges

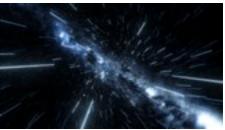
- cost & organization
- computing: data transfer, correlation and storage
- technology: antenna design at low, mid, and high frequency
- pathfinders and precursors

- Pathfinders: e-VLA, e-MERLIN; e-EVN; LOFAR, LWA; and more...
- Precursors: MeerKAT; MWA; ASKAP
- Goals
 - real time large data transfer and management
 - wide field, aperture arrays, focal plane arrays
 - Iow frequency window

Pathfinders: the e-EVN

- a consortium of independently built and operated radio telescopes in Europe, extending to Asia, Africa, America
- Includes some of the largest apertures in the world (Arecibo, Effelsberg, WSRT, SRT); yet only ~0.03 km⁻²
- Disks being abandoned and replaced by fast optical fibre links and real time correlation

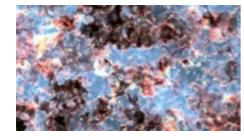
Precursors


- MeerKAT (SA): 64x16m dishes, I-1.75 GHz, 4km radius; pulsars, HI, and more
- ASKAP (Aus): 36x12m dishes with Phased Feed Array providing 30deg² field of view in 0.8-1.7 GHz
- MWA (Aus): fully operational, aperture array, 80-300 MHz

SKA Key Science Projects

• Galaxy evolution, cosmology and dark energy

• How do galaxies evolve? What is dark energy?



- Strong-field tests of gravity using pulsars and black holes
 - Was Einstein right about gravity?

The origin and evolution of cosmic magnetism

• What generates giant magnetic fields in space?

- Probing the Cosmic Dawn
 - How were the first black holes and stars formed?

• The cradle of life

• Are we alone?

SKA design

- 2 phases
 - SKAI: construction 2018-203
 - SKA2: detailed design >2018
- SKAI: dual site, triple scope
 - **SKAI-low** (Aus)
 - SKAI-mid (SA)
 - **SKAI-survey** (Aus)

- Australia
- Main driver: highly redshifted 21 cm HI line from the Epoch of Reionization and earlier
 - pulsars, magnetized plasma, extrasolar planets
- ~250000 antennas
- 50-350 MHz
- I km radius core
- 45 km maximum baseline
- 20 deg² field of view

SKAI-mid

- South Africa
- pulsars, nearby to mid-z
 HI line, high sensitivity
 continuum sources
- ~250 I 5m dishes (Meerkat +SKAI dishes)
- 0.35-3 GHz; ready for additional receivers
- ~100 km maximum baseline

SKAI-survey

- Australia
- survey large areas of sky in line and continuum, transients

- ~100 I5m dishes (ASKAP+SKA1 dishes)
- 0.6-1.7 GHz
- ~25 km maximum baseline
- PAF (Phased Array Feed)

SKA2 - early view

- Increase total collecting area
 - 1,000,000 m²
- Improve angular resolution (longer baselines)
 - ~| mas
- Extend frequency coverage (additional receivers)
 - 20 GHz

(a biased bit of) SKA science

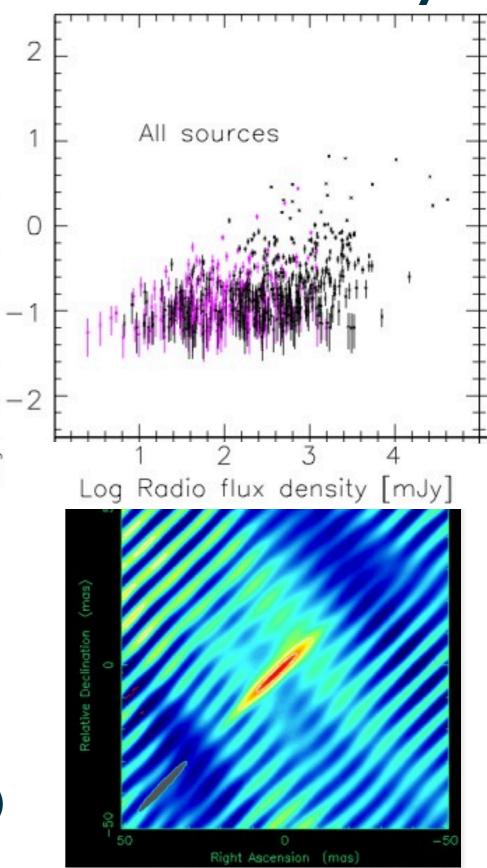
5 AGN physics

5.1	Relativistic jets with SKA A. Wolter, F. Tavecchio, G. Bonnoli, M.Giroletti, S. Turriziani, A. Tramacere, I. Don-	
	narumma, L. Costamante	81
5.2	Radio emission from Low Luminosity radio-AGNs	
	M. Giroletti, F. Panessa	83
5.3	Nuclear radio emission from quiescent galaxies	
	A. Capetti	84
5.4	The life cycle of radio AGN	
	M. Murgia, P. Parma	85
5.5	Probing AGNs with Water (Mega)Masers	
	A. Tarchi, P. Castangia	88

White Bool

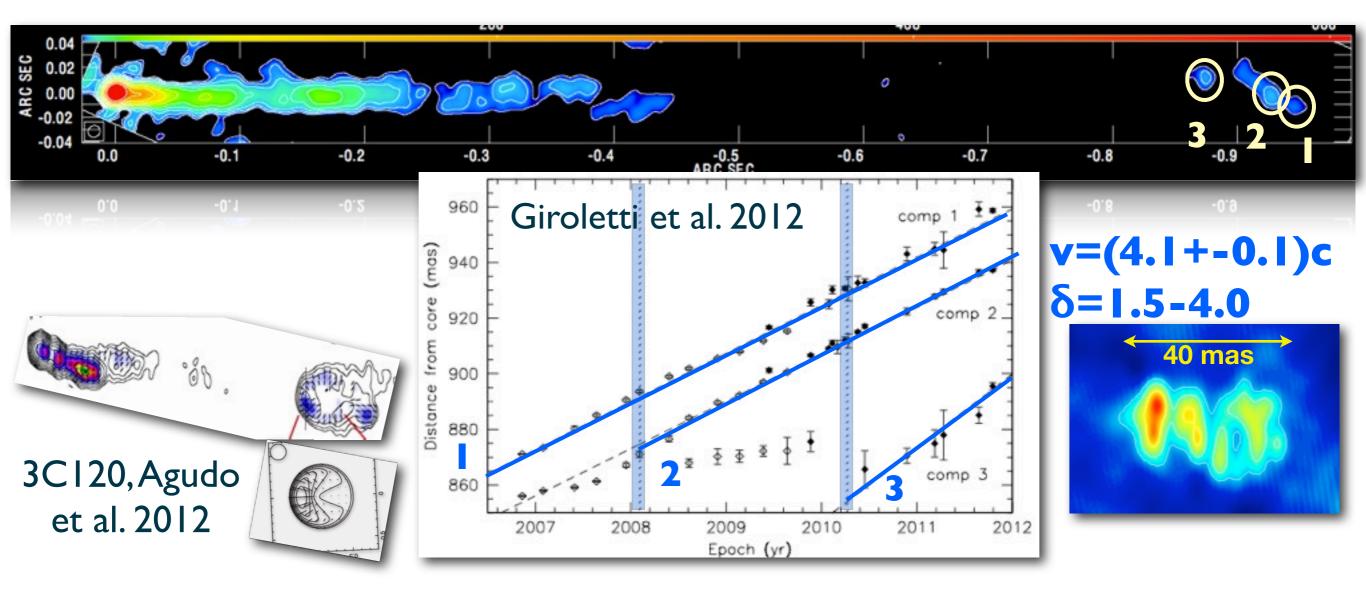
81

Italian


keywords: sensitivity, polarization, variability

Possible strategies

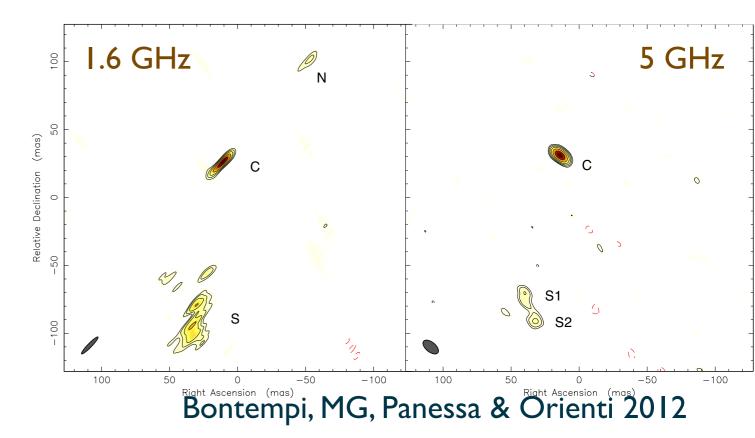
- Deep observations can reveal weak nuclear emission in very weak or very distant nuclei, constraining physical properties through accurate spectral index, polarization, and variability measurments
- Space and time resolved polarization observations can reveal magnetic field structure in jets
- Great discovery space for fast transients


Towards SKA science: IFHL EVN survey

- Radio-MeV/GeV connection firmly established (Ackermann+11, Ghirlanda +10,11)
- Radio-VHE connection completely elusive
 - VHE sources **are** radio loud
 - brightest radio sources are not VHE detected
 - IACT observing mode is highly biased
- Let's start with IFHL: 514 sources detected above 10 GeV in uniform all-sky LAT survey
 - I00% detection rate for blazars,
 - ~70% detection rate for unassociated sources (13% of 1FHL)

Towards SKA science: M87

Data from a long&dense monitoring with the eEVN reveal ejection of superluminal components within the jet knot HST-1 is temporally associated to 2008, 2011 VHE events.



Towards SKA science: LLAGN

- high sensitivity, dual frequency EVN observations reveal compact nuclear features in ~60% of local LLAGNs
- In cases like NGC3227, observations reveal a compact, flat spectrum component
- In other cases, the situation is much more complex (detection at just one frequency, or none, weak constraints on Tb etc.)
- Eventually, SKA could reveal radio emission from all black holes in the local universe

 $\alpha \sim 0.5$ $T_b > 10^{7.5} K$ $L \sim 10^{19.5} W Hz^{-1}$ $B \sim 4.5 mG$

Radio & gamma rays

- VLBI detection rate for unassociated sources with a candidate blazar counterpart based on IR colors or radio spectral index is 100% (yet: low statistics)
- physical information, even at low frequency, is of great help in picking right counterpart, particularly at low flux density
- other important parameters: polarization, variability

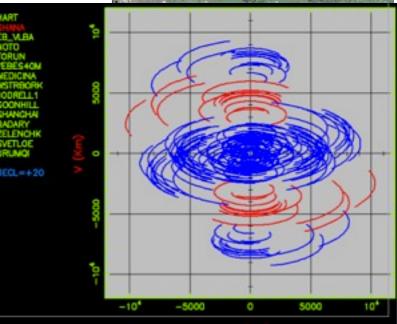
SKA & CTA

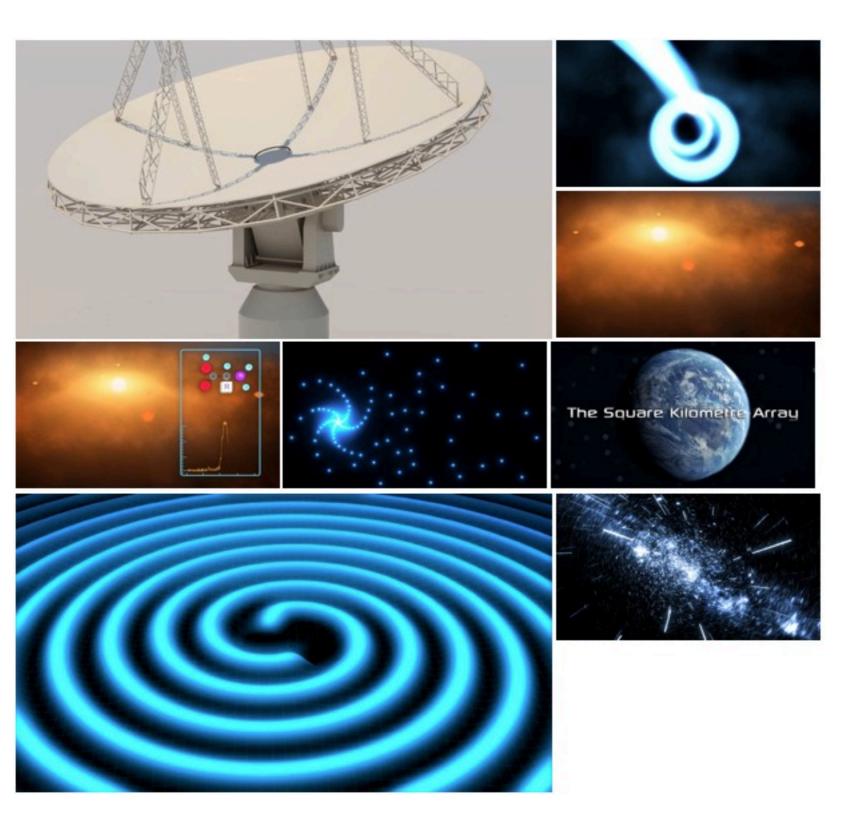
- > 10x step over predecessors
- Large international collaborations
- Dual site
- Dual-multiple design & energy range
- Great computational challenge
- Non thermal universe

Potential for Africa VLBI

Network

African Countries with Large Satellite Earth Station Antennas:


South Africa, Ghana, Kenya, Madagascar, Zambia (SKA partners) + Algeria, Benin, Cameroon, Congo Democratic Republic, Congo Democratic Republic, Congo People's Republic, Egypt, Ethiopia, Gabon, Malawi, Morocco, Niger, Nigeria, Senegal, Tunisia, Uganda, Zimbabwe



Summary

 Huge breakthrough for data, technology, and science

For radio-gamma connection, main improvements through multi-λ polarization, variability

• and wait for SKA2!