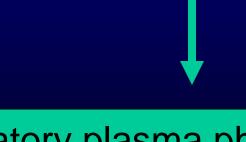
PLASMA PHENOMENA IN HIGH-ENERGY ASTROPHYSICS

Attilio Ferrari

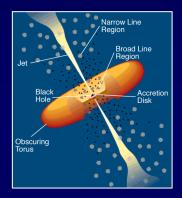
CIFS, Università di Torino

12th Agile Workshop, May 8, 2014

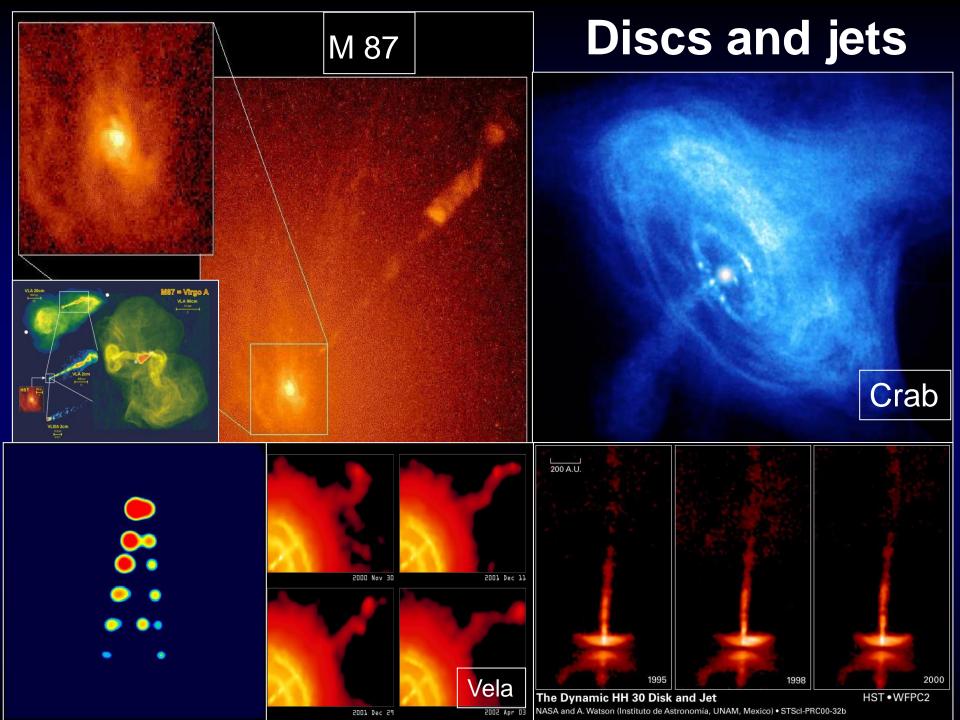

Plasma processes of astrophysical relevance

	LABORATORY	ASTROPHYSICS
DYNAMO	Sustainment of RFP and	Solar magnetic field cycles,
	spheromak configurations;	Planetary magnetic field;
	Sawtooth crash/relaxation in	Stellar magnetic field cycles;
	RFP and spheromak	Galactic magnetic field
		Magnetic field in accretion disks
RECONNECTION	Merging plasmas;	Earth magnetosphere;
	Spontaneous reconnection in	Solar flares and coronal mass
	RFP and spheromak;	ejection;
	Sawtooth oscillation;	Star formation;
	Forced reconnection during	Protostellar disks;
	helicity injection	Particle acceleration to ultra-
		relativistic energy
HELICITY	Relaxation/dynamo in RFP	Disruptions in coronal loops;
CONSERVATION	and spheromak;	Solar flares;
AND TRANSPORT	Merging reconnection;	Helicity in solar wind;
	Helicity injection experiments	Fast dynamo
ANG. MOMENTUM	Momentum redistribution in	Accretion disks surrounding
TRANSPORT	the RFP;	protostars, compact stars and
	Momentum generation in	black holes,;
	tokamaks	nonaccreting circumstellar disks;
		Differential rotation in the Sun,
ION HEATING	RFP in steady-state;	Solar corona and wind;
	RFP during relaxation events;	Earth magnetosphere;
	Merging reconnection expts;	Accretion flow onto black holes;
	Spherical tokamak with	Pre-acceleration of cosmic rays
	neutral beam injection	
MAGNETIC CHAOS	Transport in RFP and	Alfven waves in solar corona,
AND TRANSPORT	spheromak,,	Heating in solar corona,
	Transport during forced	Cosmic ray transport in galactic
	reconnection,	magnetic field;
	Kinetic dynamo in RFP and	Heat transport in clusters of
	spheromak	galaxies and galaxy cluster halos

Highly nonlinear (relativistic) physics Huge extension of physical parameters Scalability ?


Numerical plasma physics

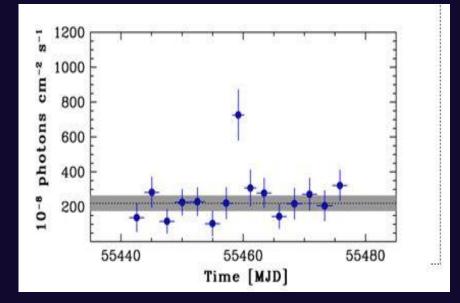
Astrophysics Observations


Laboratory plasma physics Experiments and validation

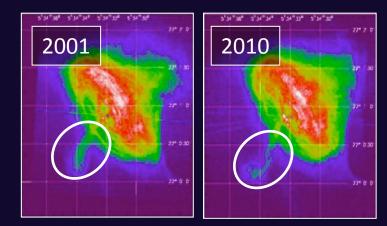
A TEST CASE SUPERSONIC, RELATIVISTIC, COLLIMATED PLASMA JETS FROM ACCRETION DISCS

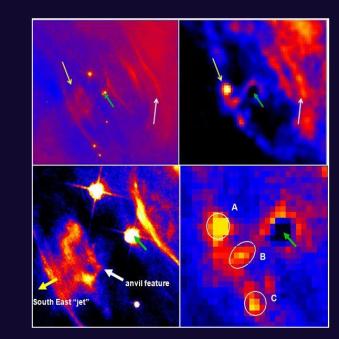
M. Belan⁴, G. Bodo³, F. Cattaneo⁶, S. De Ponte⁴, A. Ferrari^{1,2}, S. Massaglia^{1,2}, A. Mignone^{1,2}, P. Rossi³, E. Striani^{1,7}, M. Tavani⁷, D. Tordella⁵, P. Tzeferacos⁶, C. Zanni³

1 – Consorzio Interuniversitario Fisica Spaziale, CIFS
 2 - Dipartimento di Fisica, Università di Torino
 3 - INAF Osservatorio Astrofisiico di Torino
 4 - Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano
 5 - Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino
 6 – Computation Institute, University of Chicago
 7 – INAF – IAPS, Tor Vergata

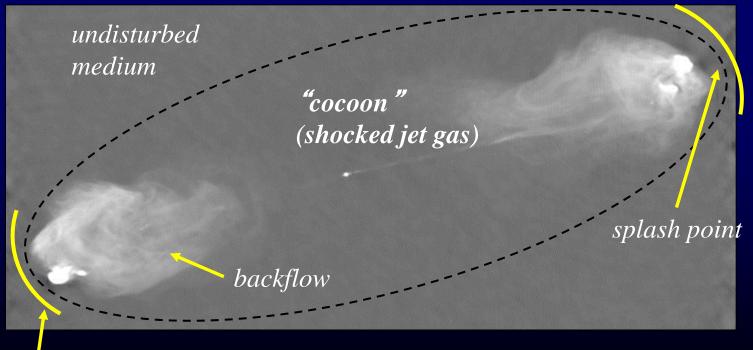


Jets and VHE Sources Variabilities


- VHE (gamma-ray) emission from blazars and rapid variabilities correlated with X rays and radio emission
 - Mkn 421 (Donnarumma et al. 2009)
 - M87 (Acciari et al. 2009)
- Doppler boosting in relativistic jets
- Jets with relativistic spine and slower sheath layer:
 - Spine produces synchrotron optical and X-ray photons, that are boosted to GeV and TeV gamma rays by inverse Compton in the sheath (e.g. Tavecchio & Ghisellini 2008)
 - Radio emission from extended (expanding) cocoon


Jet Wiggling & Gamma Flares

SE jet morphology is "S" shaped and show remarkable time variability (Weisskopf 2013)


Gamma flares correlated with Xray emission variabilities in the anvil region and beyond

Jet propagation in ISM/IGM


- Light supersonic jets interacting with a dense medium (AGN)
- Equal density supersonic jets interacting with ISM (YSO)
- KH (shear) instabilities yield morphologies (knots, wiggles) and supra-thermal particle acceleration
- Confinement by external pressure (magnetic?)
- Activity of jet's head and energy deposition

bow shock

Remnant jets

- Clusters and groups of galaxies emit X-rays
- Thermal bremsstrahlung from hot (0.5 keV up to 10 keV) gas confined in gravitational well: hot Intra-Cluster Medium (ICM)
- Heating mechanism?
- Evidence that AGN jets affect the ICM

X-ray cavities corresponding to radio lobes X-ray shells surround cavities Shell temperature lower than surrounding medium: weak shocks

(Fabian et al. 2003, 2005 - CHANDRA) Perseus cluster

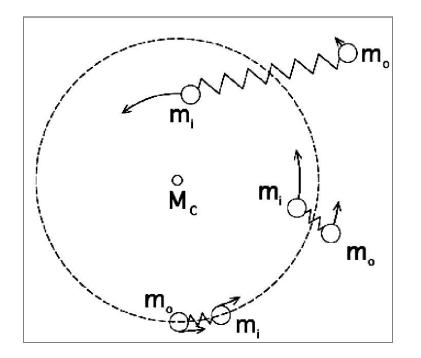
Accretion discs: theoretical issues

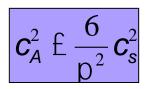
- Model of steady discs on slightly sub-Keplerian orbits accreting onto black holes or stars
- Subsonic flows (supersonic, shocks?)
- <u>Angular momentum transport by "enhanced</u> <u>turbulent viscosity"</u>
 - by magneto-rotational instability MRI
 - by large-amplitude vortex dissipation
 - something else ?
- Magnetic fields below equipartition
- Heating and radiation

Angular momentum equations

Azimuthal momentum equation

$$\frac{\partial}{\partial t} \left(\rho R v_{\varphi} \right) + \nabla \cdot \mathbf{R} \left[\rho v_{\varphi} \mathbf{v} - \frac{B_{\varphi}}{4\pi} \left(\mathbf{B}_{R} + \mathbf{B}_{z} \right) + \left(P + \frac{B_{R}^{2} + B_{z}^{2}}{8\pi} \right) \widehat{\mathbf{e}}_{\varphi} \right] - \nabla \cdot \left[\frac{\eta_{V} R}{3} \left(\nabla \cdot \mathbf{v} \right) \widehat{e}_{\varphi} + \eta_{V} R^{2} \nabla \frac{v_{\varphi}}{R} \right] = 0$$

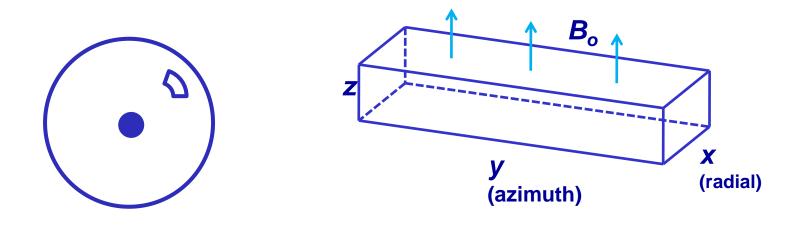

 Radial flux of angular momentum (<u>no Navier-Stokes</u> viscous terms)


$$R\left[\rho u_R \left(R\Omega + u_{\varphi}\right) - \frac{B_R B_{\varphi}}{4\pi}\right]$$

- angular momentum inflow (advected)
- angular momentum outflow = $\Sigma R W_{R\varphi}$, combination of Reynolds (velocity) and Maxwell (magnetic) stress tensors
- α -disc models $n_t = \partial C_s H$

Magneto-rotational instability

 Weak B-field connecting adjacent differentially rotating rings of a Keplerian disk

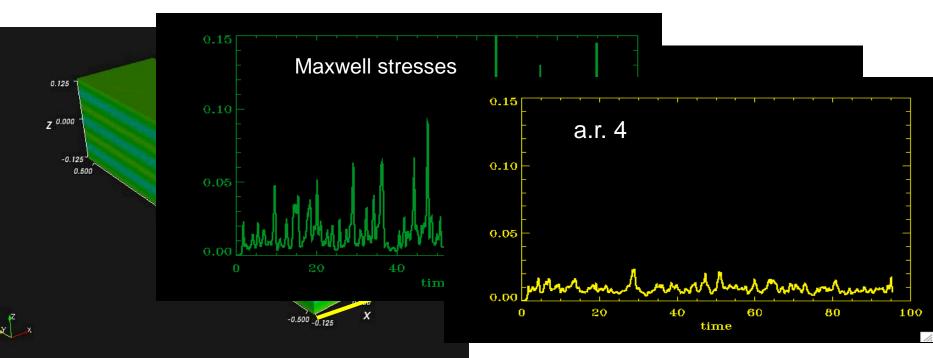


Instability condition Velikhov 1959 Chandrasekhar 1960 Balbus & Hawley 1991

- The inner mass m_i looses angular momentum to the outer mass m_o that gains momentum
- The process is unstable if the Alfven velocity is subthermal, as then m_i falls inward and m_o moves outward

Nonlinear MRI

- Disc turbulence driven by nonlinear development of the MRI
- Nonlinear studies of MRI turbulence rely on numerical simulations
- Most studies in term of local approximation—shearing box
- Fromang & Papaloizou 2007; Fromang et at. 2007; Pessah et al. 2007; Guan et al. 2009, Simon et al. 2009, Bodo et al. 2011

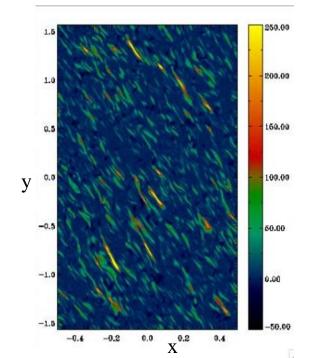

3D high-resolution simulation in shearing box approximation (Sano & Inutsuka 2001, Mignone et al 2007)

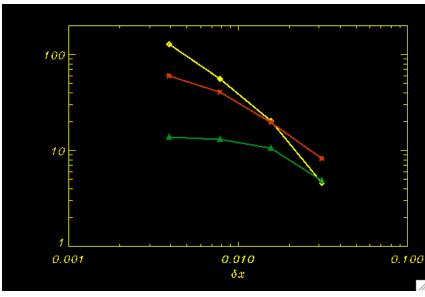
Non-zero net magnetic flux

The channel solution, intermittent states, transition to turbulence, calculation of Maxwell stresses

Aspect ratio dependence: large a.r. enhances the effect of parasitic instabilities destroying channel solutions

For large a.r. stresses are very small

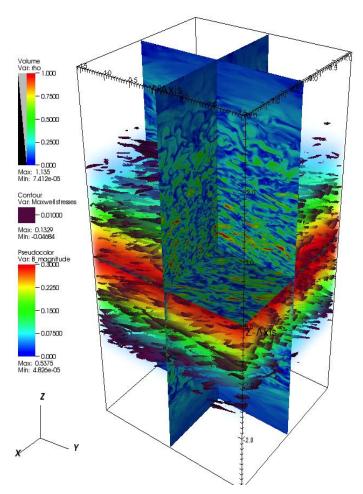



MRI turbulence and dynamos

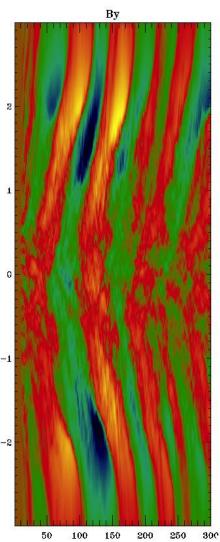
- Work with no net flux: stationary solution with selfmaintained magnetic field for MRI ?
- Even in cases in which total flux vanishes it is possible to maintain a nonzero level of turbulence
 - Turbulence generates a magnetic field (dynamo action)
 - Magnetic field drives the MRI
 - MRI maintains the turbulence
- Turbulence sets in as a subcritical nonlinear dynamo instability
- Possibility of a universal state of magnetization for all similar discs

Periodic shearing boxes

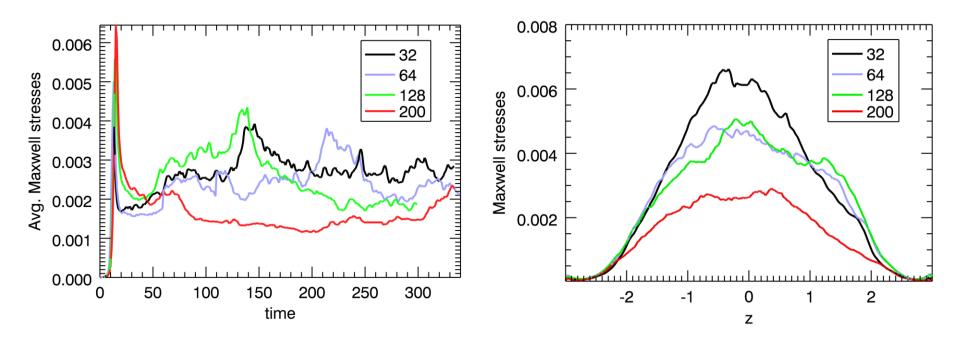
- When $B_0=0$ and $v=\eta=0$ the shearing box equations have no characteristic length-scale
- When $v \neq 0$ only length-scale is the viscous scale ($\sqrt[V]{V}$
- $L \rightarrow \infty$? (increase resolution)
- Compute Maxwell stresses as a function of *L* (or $\delta x \approx 1/L$)
- Use different codes, different resolutions
 - Godunov: Piecewise linear (yellow)
 - Godunov: Piecewise quadratic (red)
 - High order (green)



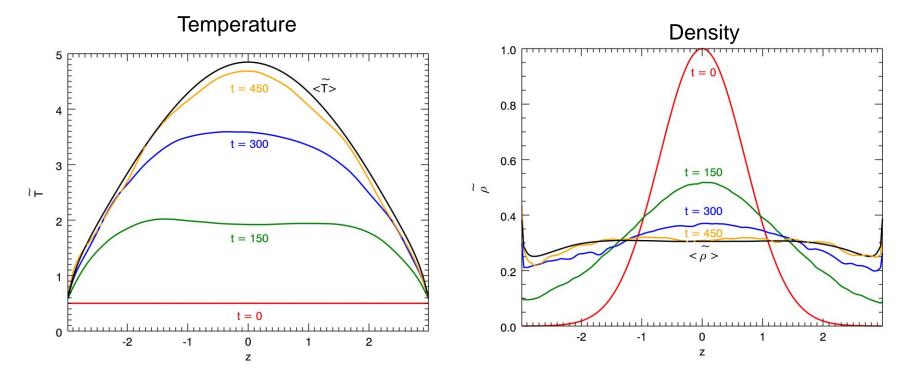
Average Maxwell Stress

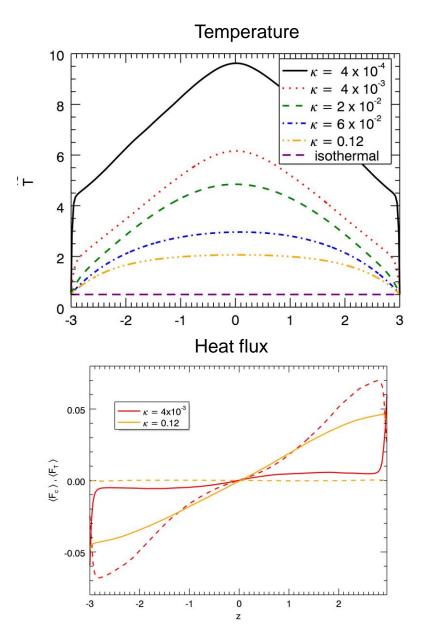

Maxwell stress

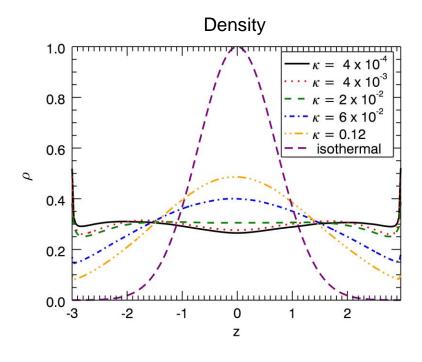
- Most likely outcome is that $f(L) \rightarrow \text{const} \text{ as } L \rightarrow \infty$
- Asymptotically, transport becomes a fixed ("universal") multiple of the viscous transport
- <u>Negligible in astrophysical situations</u>
- If solution is asymptotically independent of *L* characteristic scale of magnetic structures is comparable to dissipation scale
- Solution is a *small-scale* dynamo
- In order to recover turbulent transport solution must have an efficient inverse cascade. i.e. must be a *large-scale* dynamo (*system-scale* dynamo)


Stratified isothermal

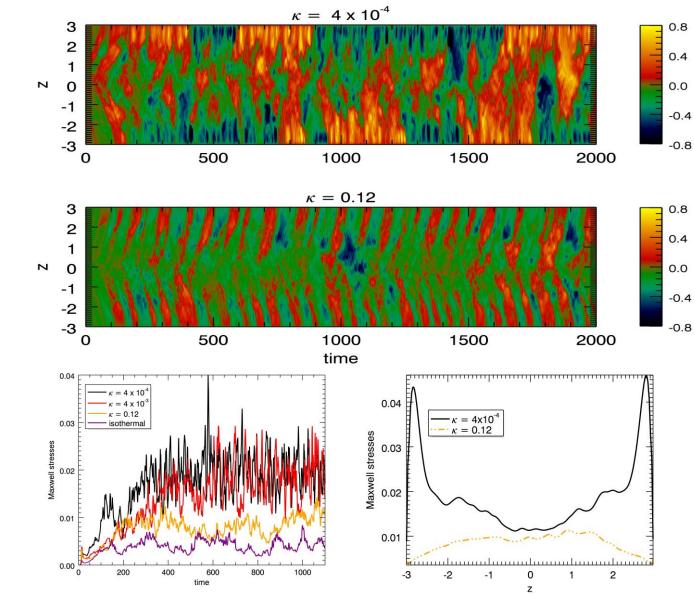
- 3 scale-heights on each side of midplane
- Strong evidence
 for pattern
 propagation
- Magnetic buoyancy has negligible dynamical effect
- Insensitive to b.c.'s


Stratified isothermal

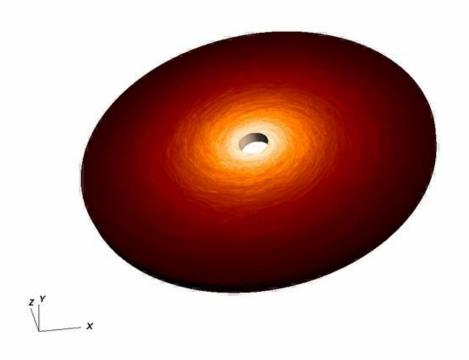

- Transport dominated by Maxwell stresses in the mid-plane region
- Little evidence of cyclic behavior in the overall transport
- Overall transport decreases as the resolution increases
- No convincing evidence of convergence at these resolutions

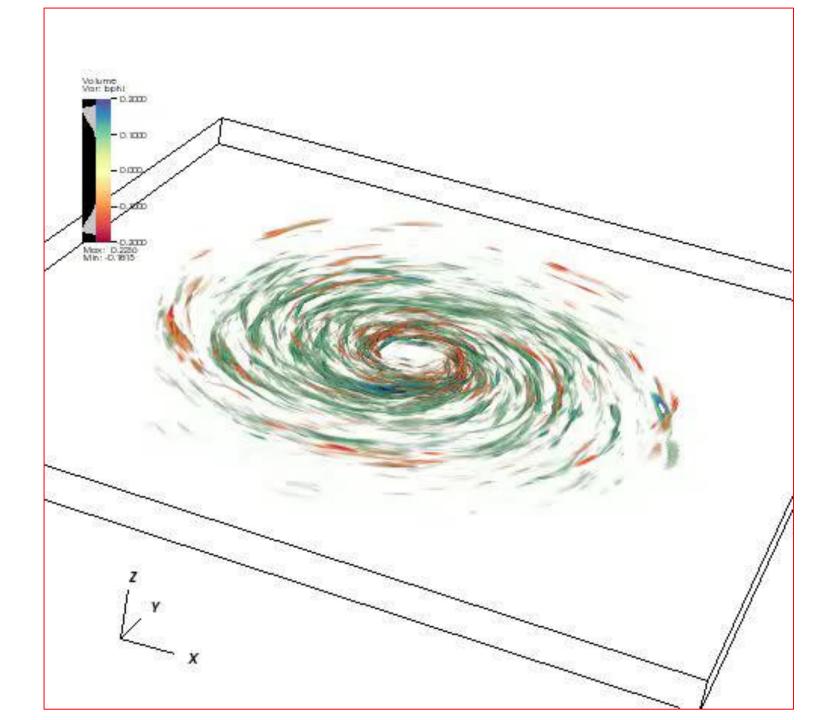

Stratified, perfect gas: evolution

- Isothermal initial state
- Viscous and Ohmic heating introduce significant departures from isothermal state
- Density becomes constant across the layer



Conductive and convective regimes


 Overturning motions lead to efficient density homogenization


Conductive

Convective

Global simulations

Conclusions

- MRI provides a valuable framework to understand turbulent transport in accretion discs
- In the zero net –flux case turbulence generated by a subcritical dynamo instability
- Effective angular momentum transport depends on type of dynamo action
 - Small-scale \rightarrow scales with diffusivity: inefficient
 - Large-scale \rightarrow scales with system size: efficient
- Which type of dynamo action is observed depends on geometry, boundary conditions, stratification, eqn of state, radiative transport, etc.