Magnetospheric Particles
 and Earth

The History

Van Allen Belts

Van Allen radiation belts

Coordinate systems

Geographical coordinates: Latitude (ϕ)
Longitude (λ)
Altitude (h)

Mcllwain coordinates: L, B
$\mathrm{L}=\mathrm{r}_{\text {eq }} / \mathrm{r}_{\text {Earth }}$;
B - geomagnetic field induction;
Geomagnetic coordiantes:
Longitude (λ)
$\mathrm{L}=1 / \cos ^{2}\left(\phi_{\mathrm{m}}\right)$
ϕ_{m} - geomagnetic latitude
$r_{\text {eq }}=r_{\text {Earth }}+h$

Periods of longitudinal drift of electrons and protons in radiation belt (for $L=1.2$)

Connection between latitude and Lcoordinate for low-altitude orbits
 ($400-600 \mathrm{~km}$)

Early Space Missions

Electron and Proton flux variations below the radiation belts

- Electron Intercosmos Bulgaria-1300 and Meteor 3
- Mariya Salyut 7
- Mariya-2 MIR
- Gamma 1 GAMMA Astrophysical Station
- Meteor 3A
- Oreol 3

Magnetic time of flight spectrometer Mariya (Mariya-2)

Spectrometer registers charged particles (20-200 MeV) separately: electrons, positrons, protons, antiprotons et. al., measures their energy and incident angles. Instrument consists of plastic scintillation
c3 hodoscope, permanent magnet and time of flight system.

Single and Multiple Electron Bursts

Duration distributions for high-energy electrons bursts (experimental data)

L-distribution for earthquakes

Ionospheric-magnetosferic perturbation

EME $\left\{\begin{array}{l}>\text { Natural emissions (earthquakes and volcanic eruptions) } \\ >\text { Anthropogenic emissions (PLHR, VLF \& HF transmitters) }\end{array}\right.$

ULF EME wave-trapped particle interaction?

Ground-based preseismic EME observations

(8) ULF and LF seismic origin electromagnetic noises.

1. Observation of ULF emission on the surface of the Earth (1989, Lomo-Prieto, $\mathrm{M}=7.9$). 3 hours before earthquake ($0.05-0.2 \mathrm{~Hz}$). Fraser-Smith A.C., Bernard A., Mc. Gill P.R. Geophys. Res. Letts, 1990, 17/9, 1465.
2.A. Qbservation in the space: 204. Гc

20.01.1989: Particle burst was registered in two hours and ten minutes before earthquake

Wave - particles interaction mechanism

$\Delta \mathrm{L}=\left(\mathrm{L}_{\mathrm{EQ}}-\mathrm{L}_{\mathrm{PB}}\right) \leq 0.1$ $\mathrm{H}_{\text {mirror }} \approx 300 \mathrm{~km}$

$$
\Delta \mathrm{T}=\mathrm{T}_{\mathrm{EQ}}-\mathrm{T}_{\mathrm{PB}}
$$

Correlations between $\mathrm{EQ} \& \mathrm{ps}: \Delta \mathrm{T}_{\mathrm{EQ}-\mathrm{PB}}$ distributions

SAMPEX-PET Mission

Orbitaltitude:	$520 \div 670 \mathrm{~km}$
Orbit inclination:	82°
PET Pointing modes:	ORR; MORR; 1 RFM (see text)

PET channel Level-2 data used for this study

Particles	Energy (MeV)	Geometric factor $\left(\mathrm{sm}^{2} \mathrm{sr}\right)$	Channel
Protons	$28 \div 60$	1.5	PHI
Protons	$19 \div 28$	1.65	PLE
Electrons	$2 \div 6$	1.65	ELO
Electrons	$4 \div 15$	1.5	EHI
Electrons	$4 \div 30$	-	RNG
Protons	>60	0.4	
Electrons	>15		PEN
Protons	>85	0.25	
Electrons	>30		

SAMPEX Pointing Modes

SAMPEX/PET has operated with three different pointing programs:

-ORR (original Orbit Rate Rotation)
-MORR (Modified Orbit Rate Rotation)
-1 RPM (1 Rotation Per Minute)
\checkmark During the ORR pointing mode the PET yaw axis is substantially radial to the Earth. So, PET may detect particles with pitch angle in a wide range and, in particular, also in the loss cone (precipitating particles) or near to it.
\checkmark On the contrary, in the MORR mode the detector yaw axis is fundamentally perpendicular to the geomagnetic field lines, since it was implemented mainly to study particles with pitch angle near 90° (trapped particles). Measurements for $\alpha_{P E T}$ values far from 90° are performed in periods during which PET yaw axis is parallel to the geomagnetic field (B), when $\mathrm{B}>0.3 \mathrm{G}$, and perpendicular to it, when $\mathrm{B}<0.3 \mathrm{G}$.
\checkmark Finally, in the 1 RPM mode the $\alpha_{P E T}$ distribution is flat since the PET yaw axis, rotating continuously at 1 RPM, allows the particle detection at any pitch angle value.
ΔT distribution of events (particle bursts and earthquakes). $\Delta \mathrm{T}=\mathrm{T}_{\text {earthq }} \mathrm{T}_{\text {burst }}$. Experimental data of PET/SAMPEX

Event selection:

1) $|\Delta L|<0.05$
2) Magnitude of earthquakes $M>5.0$

Dependence of the $\Delta \mathrm{T}_{\mathrm{EQ}-\mathrm{PB}}$ correlation on the PET yaw axis orientation

\checkmark No correlation is obtained (that is, no relevant peak is observed) with PBEHI data collected in the other MORR(1), 1RPM, and MORR(2) pointing periods
\checkmark No correlation is obtained in the 4 pointing mode periods with PBELO data.

Correlations between $\mathrm{EQ} \& \mathrm{ps}: \Delta \mathrm{T}_{\mathrm{EQ}-\mathrm{PB}}$ distributions

Phase A Report
Italian Space Agency Program for Small Scientific Missions
July 2001

ESPERIA

Earthquake investigation by Satellite and Physics of the Environment Related to the Ionosphere and Atmosphere

Vittorio Sgrigna Piergiorgio Picozza Livio Conti

ESPERIA project

DEMETER
 Talk M. Parrot

29/06/2004-9/12/2010

The Resurs DK1 and VSPLESK ERA AGILE?

ARINA (Resurs-DK1 satellite, inclination 71°, altitude $350-600 \mathrm{~km}$, from 2006) VSPLESK (ISS, inclination $51,6^{\circ}$, altitude $300-350 \mathrm{~km}$, from 2006)

Resurs DK1 satellite

Vernier engine installation

ARINA instrument

On the basis of multilayer scintillation detector. Acceptance of ARINA 10-50 times higher than acceptance of instruments, used in earlier experiments for similar studies.

Acceptance		$10 \mathrm{sm}^{2} \mathrm{sr}$
Aperture		± 30 degrees
Energy range	protons	$30-100 \mathrm{MeV}$
	electrons	$3-\mathbf{3 0} \mathrm{MeV}$
Energy resolution	protons	10%
	electrons	15%
Time resolution		100 ns
Mass		$8,6 \mathrm{~kg}$
Power consumption		$13,5 \mathrm{~W}$

ARINA and VSPLESK experiment.
Experimental data examples for particle bursts

(C) 1 T distributions of events for various satellite experiments. $\Delta \mathrm{T}=\left(\mathrm{T}_{\text {equake }}-\mathrm{T}_{\text {burst }}\right), \Delta \mathrm{L}<0.1, \Delta \mathrm{~L}=1$ $L_{\text {equake }}-\mathrm{L}_{\text {burst }} I$

The Distribution Map of Seismic Belts
On each day there are about two Earthquakes with Magnitude M>5
Every two day there is a $M>6$ Earthquake

ARINA observation of event 13.06.2006. particle burst (4:20); earthquake $\mathrm{M}=5.0$ (6:30)

S.V.Aleksandrin, A.V.Bakaldin, A.M.Galper et al.

Izvestiya RAN, 2009, 73, 379.

At this moment, it s possible to use the following way for using particle bursts for remote diagnostics of local magnetospheric and geophysical events, including seismic. If the spectrometer on the satellite registered a electron burst, it is possible to determine the location (latitude) of the local perturbation of the radiation belts, which should be at the same L-shell that the place of particle burst registration. In case of a seismic disturbance that occurred during the earthquake preparation, it possible to determine the latitude of forthcoming earthquake. If there is a difference in the time of registration between groups of particle bursts with different energies, then by analyzing of the time structure and energy spectra of particles detected during the burst can provide additional constraints on the longitude of the location of possible disturbance source of the radiation belt, that is, longitude of the upcoming earthquake. The figure below illustrates this approach.
(ㄷ) ARINA observation of event 29.05.2012.

Particle burst (06:05:00 UTC); earthquakes M from 4.3 to 5.5 (first 08:15:09 UTC)

ㄹㅇ ARINA observation of event 05.06.2006 particle burst (18:57); chemical explosion (duust lightning) in Nevada, USA (18:53)

(-) Simultaneous observation of electron bursts on ISS (red) and Resurs-DK1 satellite (blue)

Conclusions

- PBs of precipitating high-energy Van Allen electrons appear to precede statistically by some hours the occurrence of moderate and strong EQs.
- No correlation was found between PBs and other nonseismic sources.

Indication for a deeper investigation of the physical mechanisms under study.

The Next Future

- LIMADOU- CSES CHINA SEISMO-ELECTROMAGNETIC SATELLITE
- Talk R. Battiston

Thanks!

http://spaceweather.roma2.infn.it

