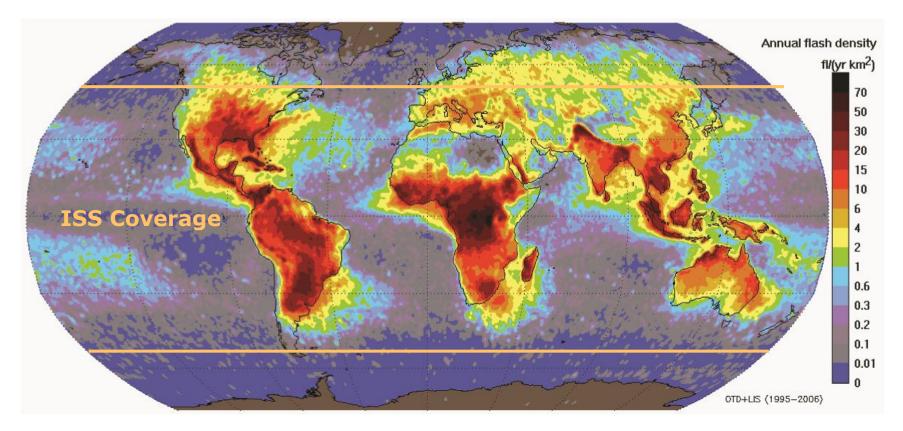


The ASIM experiment on the ISS

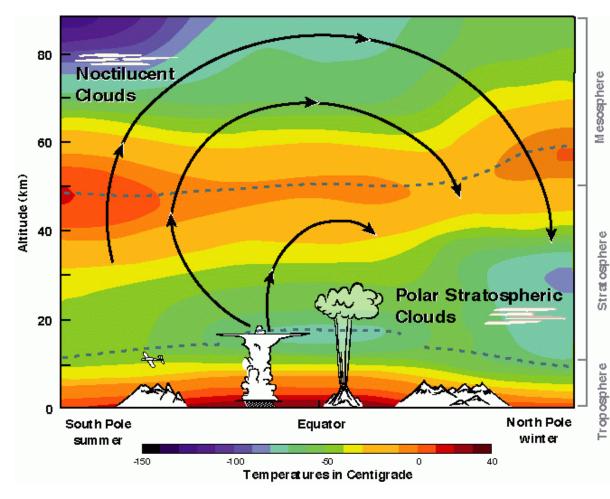
Torsten Neubert and the ASIM Team

DTU Space National Space Institute



Content

- The Science
- The ASIM Payload
- The Science Instruments
- Status and Consortium



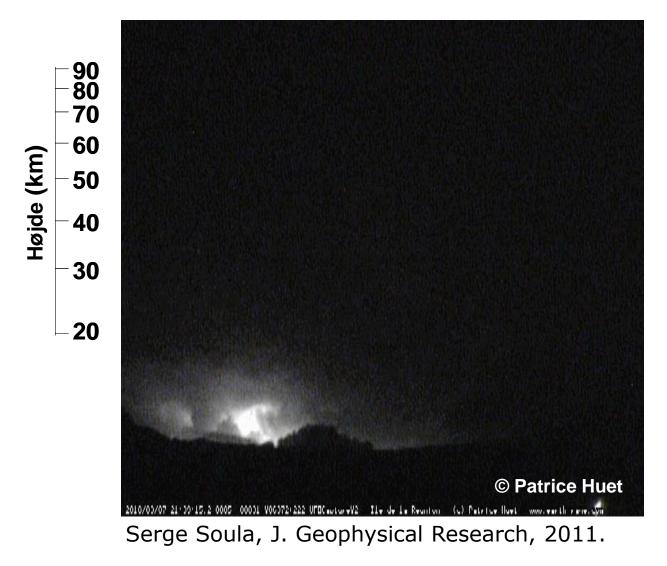
The occurrence of lightning

LIS Data, Hugh Christian

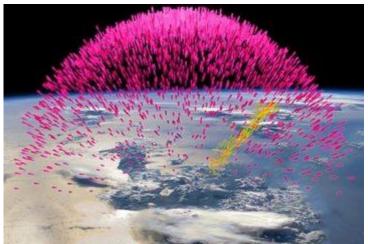
The global transport

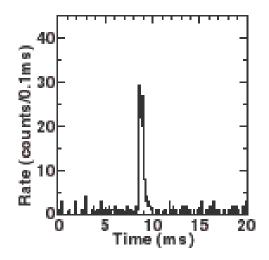
Ordinary storms:
– horisontal winds

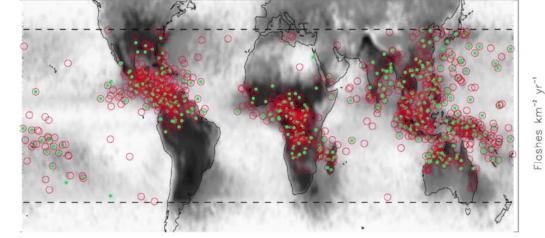
- Thunderstorms:
 - vertikal winds
 - Make them electric
 - Transporterer dust and water vapor to high altitude.
 - The higher:
 - longer lifetime
 - larger area affected
 - larger overall effect


But what happens above thunderstorms?

- Difficult to measure from ground, balloon and aircraft
- The mesosphere is also called the "ignorosphere"
- Some satellite observations during recent years


Giants – discovered in 2005




Terrestrial Gamma-ray Flashes TGF - 1994

DTU

40 30

20

10

.8

01

<.01

Fishman et al. Science, 1994

Gjesteland et al., JGR, 2012

ASIM Objectives

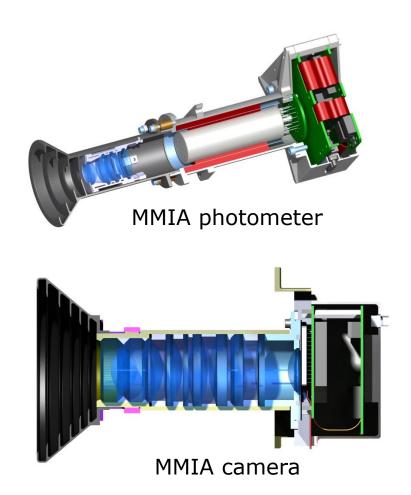
- To study energetic thunderstorm processes
 - X- and Gamma-radiation
 - Lightning from clouds to the ionosphere
 - Cloud and storm development
- To study Cosmic influences on the atmosphere
 - Lightning initiation stimulated by cosmic radiation
 - Meteor seeding of electric discharges in the mesosphere
 - Energetic particle precipitation from the magnetosphere (aurora)

The ASIM Mission

- ASIM will be launched by SpaceX Dragon to the International Space Station in 2016
- The instruments are mounted outside the ESA Columbus module pointing nadir
- Observations in bands that are absorbed in the atmosphere
- Consortium lead is Terma
- Funding from ESA and national sources

The Payload

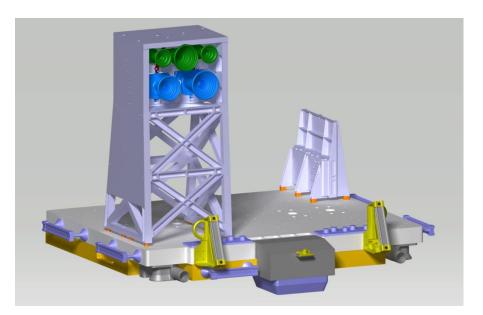
- MMIA (The Modular Multispectral Imaging Array):
 - three photometers
 - two cameras
- MXGS (The Modular X- and Gamma-ray Sensor):
 - low-energy detector (LED)
 - high-energy detector (HED)

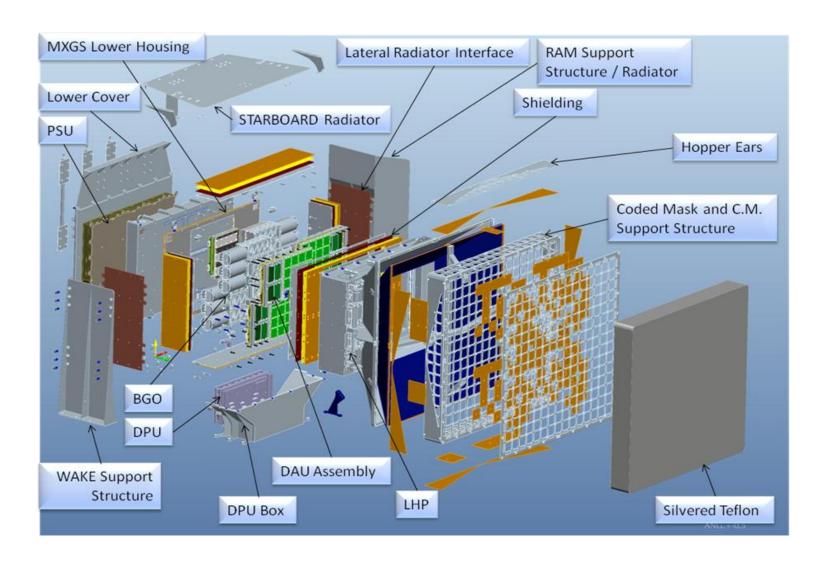


The MMIA

- Three photometers:
 - 180-250 nm
 - 337.0 nm/5 nm band
 - 777.4 nm/5 nm band
 - 100 kHz sampling

• Two cameras

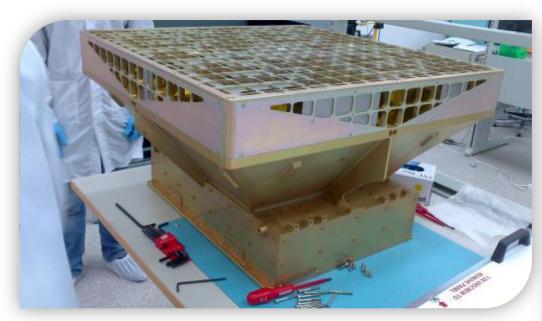

- 337.0 nm/5 nm band
- 777.4 nm/5 nm band
- 1 M-pixel
- 400 m resolution
- 12 frames/sec
- event detection software
- e2v CCD with on-chip amplification


MMIA in numbers

- Envelope: 80.3 x 38.0 x 34.5 cm
- Vægt: 17.2 kg
- Power: 18.7 W + 20 W heaters
- Data rate: 17 kbps

MMIA on the CEPA

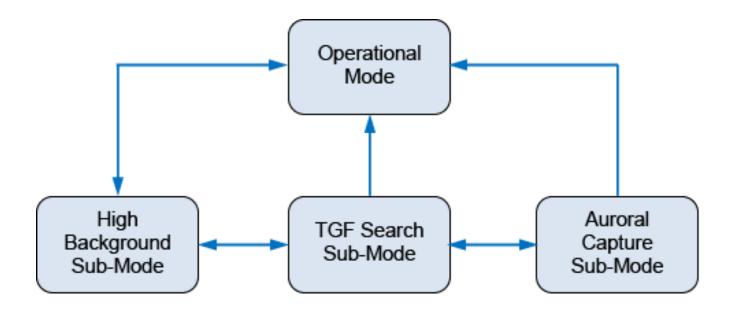
MXGS Exploded View



MXGS Specifications	
Energy range	LED: 15 - 400 keV HED: 0.2 -20 MeV
Energy resolution	LED: <10% @ 60 keV HED: <15% @ 662 keV
Quantum efficiency	LED: >0.94 @ 100keV HED: >0.60 E> 1 MeV
Relative time accuracy	< 5 µs
Burst rate capability	LED: >350 cts/ms HED: >650 cts/ms
TGF sensitivity (RHESSI mean TGF spectrum)	LED: S/N > 7 HED: S/N >15
Instrument background	LED: 2.4 cts/ms HED: 2.0 cts/ms
Trigger	Bi-directional link to MMIA
Auroral events – peak rate	10 ⁶ -10 ⁷ cts/s for a few minutes
Mounting	Nadir-pointing
Fully Coded Field of View	LED: 80 ⁰ x 80 ⁰ HED: N/A
Location accuracy (STD error circle) (RHESSI mean TGF spectrum)	Point source: $< 0.7^{\circ}$ 3° diffuse source: $< 3.0^{\circ}$

MXGS in numbers

- Envelope: 51.8 x 74.6 x 76.8 cm
- Vægt: 138.6 kg
- Power: 107 W
- Data rate: 12 kbs



MXGS Structural-thermal model at INTA, Madrid

MXGS data modes

MXGS science modes

- TGF Search Sub-Mode
 - Used in low detector background situations where data relevant to primary science objectives are being collected
 - TGF search algorithms are enabled
 - Monitoring functions of background rates, detector count sampling, accumulation of spectrally-binned data and time-binned data, are enabled.
- High Background Sub-Mode
 - Entered in high background situations (*e.g.* SAA passages)
 - TGF search algorithms are disabled and monitoring functions are enabled
 - If the background increases further, the detector enters a grey mode where only a fraction of detector events are recorded, to maintain DPU loading below 75%
 - At very high background levels, data communication to the DPU may be disabled completely.
- Auroral Capture Sub-Mode
 - Entered in high background situations, outside SAA passages, where data relevant to secondary science objectives are being collected, e.g. Auroral and REP events.
 - Identical to High Background Sub-Mode except that when the detector background rate exceeds a configurable threshold, high time resolution histograms are collected directly from address-mapped registers in the RCUs

ASIM Status

- Critical design review finished May 2014
- PFM Delivery to ESA summer 2015
- Launch 12th May 2016
- In orbit for a minimum of 2 years

The ASIM Consortium

- MMIA
 - Terma
 - DTU Space
- MXGS
 - DTU Space
 - University of Bergen
 - Space Research Institute, Poland
 - University of Valencia
- Instrument computers
 - DTU Space
 - Terma
- Payload computer
 - Carlo Gavvazzi, Italy

- Facility Science Team
 - Torsten Neubert (DTU Space)
 - Elisabeth Blanc (CEA)
 - Victor Reglero (University of Valencia)
 - Nikolai Østgaard (University of Norway)
- ASIM International Science Team of 80 groups from 30 countries
 - Including Italy

Ontical Observations

The Giant of the Mediterranean --- with a sprite ---

Van der Velde et al., 2010

Thank You

