The updated mean fluxes of the known 1AGL and 1AGLR AGILE-GRID bright y-ray source list on 2.3 years dataset F. Verrecchia^{1,2}, C. Pittori^{1,2}, F. Lucarelli^{1,2}, A. Bulgarelli³, on behalf of the AGILE Collaboration ¹ ASDC, ASI Science Data Center, via del Politecnico snc, Roma; ² INAF-OAR, via Roma, via Frascati, 33, I-00044 Roma, Italy; ³ INAF-IASF Bologna, via Gobetti 101, I-40129 Bologna, Italy.

ASI Science Data Ce

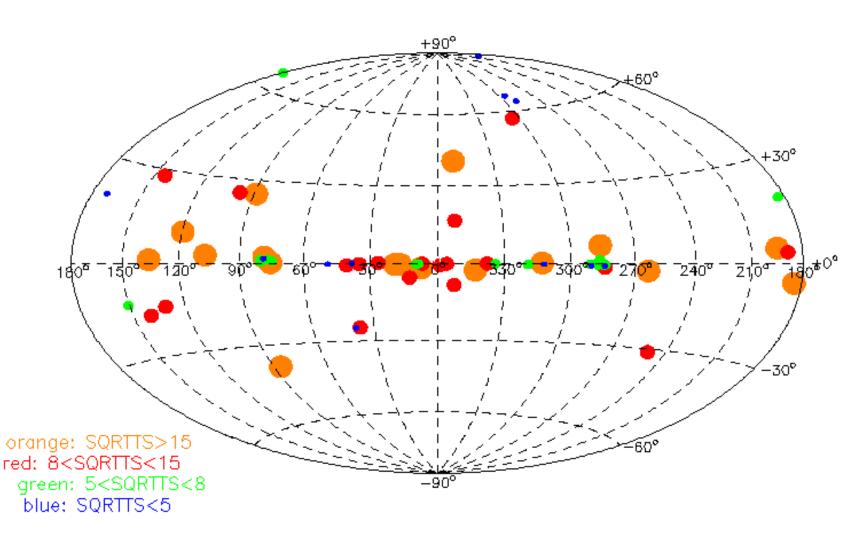


Figure 1: the Aitoff plot of 65 distinct known source positions, whose list is composed of the distinct1AGL and the revised 1AGLR sources. The source analysis has been obtained from the processing on all the pointed observations data from July 2007 to October 2009 (colors and symbol sizes are proportional to significance, blue the lowest and orange the highest).

Introduction

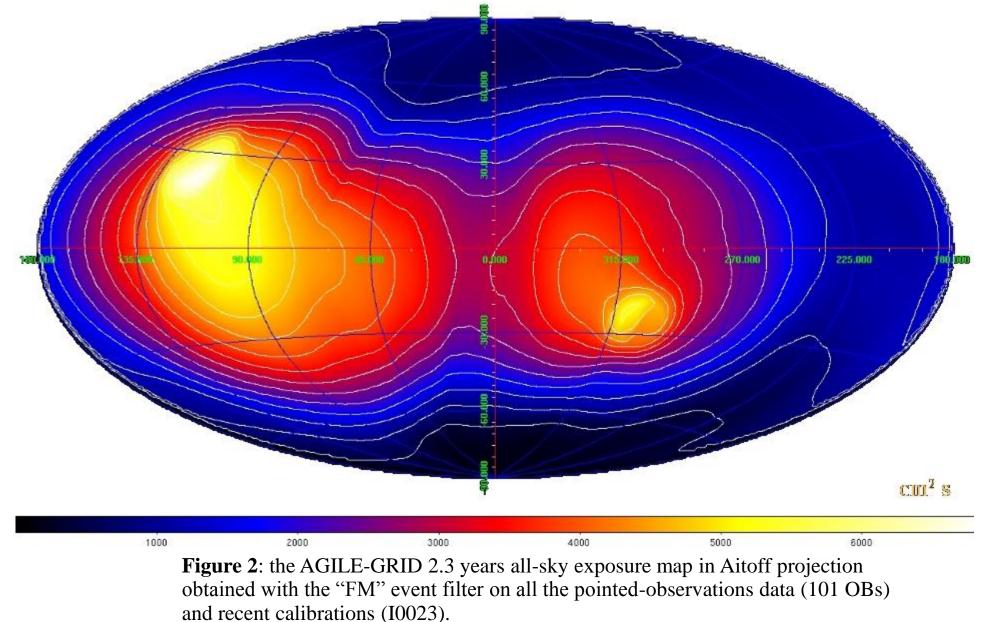
AGILE (Astrorivelatore Gamma ad Immagini LEggero) ([2], [3]) is an Italian Space Agency mission dedicated to y-ray astrophysics in the 30 MeV -- 50 GeV and hard X-ray in 18 -- 60 keV energy ranges, in orbit since April 23 2007. AGILE has been the first instrument of a new generation of high-energy space missions based on solid-state silicon technology, permitting us to substantially advance our knowledge on many source classes such as active galactic nuclei, y-ray bursts, pulsars (PSRs), unidentified y-ray sources, Galactic compact objects and supernova remnants. The AGILE spacecraft operated in "fixed-pointing" mode until October 2009 (completing 101 pointings or "Observation Blocks", OBs), when the attitude control system had to be reconfigurated and the scientific operations changed into "spinning mode". Currently the instrument pointing direction scans the sky with an angular velocity of about 1deg/s, accessing about 80% of it each day. The significance-limited (4 sigma) sample of 47 1AGL sources were detected in the E > 100 MeV band with a conservative analysis of the inhomogeneous first-year sky coverage dataset. An updated list of bright y-ray was published in [4], mainly based on a preliminary position revision of bright 1AGL on the galactic plane using the complete "pointed observations", presented a variability study of the sample of 54 distinct sources analysing each OB separatedly, without publishing mean fluxes.

Abstract:

The first AGILE-GRID source catalog (Pittori et al 2009; 1AGL) was obtained on the first year of pointed observations dataset, while the more recent "updated AGILE-GRID bright y-ray source list" (Verrecchia et al. 2013; 1AGLR) was obtained with a 1AGL source position revision on the complete pointed observations dataset performed from July 9, 2007 to October 30, 2009, and a data processing on single "Observation Blocks", in the 100 MeV -- 50 GeV energy range. The 1AGL catalog included a sample of 47 sources and reported the mean first year flux for each, while 1AGLR included 54 sources among which 15 new and 20 repositioned 1AGL, reporting for each the flux detected in each single OB. No updated mean flux of 1AGLR was was published.

As one of the ADC responsability we developed a new processing procedure to support future catalogs, to be realized in collaboration with the AGILE Team. We decided

to execute a preliminary reprocessing of all the known 1AGL +1AGLR sources on the complete (about 27.5 months) observation dataset obtained using more recent calibration with respect of both the catalogs. We report here the results source list with the updated fluxes.


The AGILE Instrument

The AGILE Payload detector consists of the silicon tracker (ST; [6], [7]), the X-ray detector SuperAGILE ([8]), the CsI(Tl) Mini-Calorimeter (MCAL; [9], [10]), and an anti-coincidence system (ACS; [11]). The combination of ST, MCAL, and ACS forms the Gamma-Ray Imaging Detector (GRID). GRID, sensitive to photon energies in 30 MeV-50 GeV band, has a wide FOV(~2.5 sr in pointing) and accurate timing (a few µs), positional and attitude information (15' location accuracy for $> 10\sigma$ detection).

AGILE 2.3-year exposure map 10023

(July 2007- October 2009)

As one of the AGILE Data Center (ADC) responsibility we support the creation of new catalogs, so we executed a preliminary reprocessing of the 1AGL + 1AGLR known source sample, 65 distinct sources, on maps created from the whole "pointing mode" dataset ("deep" maps from now on) with the latest calibrations (I0023).

The AGILE satellite raw data, down-linked about every 100 minutes, are transmitted from the Mission Control Center at Telespazio, Fucino, to the AGILE Data Center (ADC), part of the ASI Science Data Center (ASDC) located in Rome (Italy). The ADC has the duties of data reduction, scientific processing and archiving and finally to distribute standard Level-2 data to Guest Observers (GOs) or, when data become public, to all the scientific community (see ADC web page http://agile.asdc.asi.it).

The source table

		-		-					ing the updated nuxes, t
previous 1AGL o	one, the confirm	ned as	sociat	tion	and the po	ssible asso	ciation with f	5BZCAT and 3F	GL catalogs, is shown b
AGILE Name (R.A	. DEC) (J2000)	LII	BII sqr	t(TS) Flux+/-Ērr	Other name	CLASS	3FGLAssociat.	BZCAT Association
1AGLRJ0007+7307 00 07		119.670	▲	•		CTA1	Pulsar	3FGL J0007.0+7302	5BZQJ0019+7327
1AGLRJ0135+4759 01 35	01.7 47 58 39.6	130.435 -	14.258	9.7	14.7+/-1 16.3	S40133+47	FSRQ	3FGL J0137.0+4752	5BZQJ0136+4751
1AGLRJ0222+4305 02 22	2 13.1 43 04 26.2	140.050 -	16.760	8.3	14.0+/-1 6.7	3C 66A	BL Lac	3FGL J0222.6+4301	5BZBJ0222+4302
1AGLRJ0240+6115 02 40	10.6 61 14 44.9	135.630	1.084	28.4	72.4+/-3 11.0	LSI+61303	HMXRB	3FGL J0240.5+6113	
1AGLRJ0321+4137 03 20		150.646 -			10.9+/-2 7.0	NGC1275	AGN	3FGL J0319.8+4130	5BZUJ0319+4130
1AGLJ0535+2205 05 35					281.1+/-7 9.4	Crab	Pulsar	3FGL J0534.5+2201	
1AGLRJ0539-4358 05 38		249.940				PKS0537-441	BL Lac	3FGL J0538.8-4405	5BZBJ0538-4405
1AGLJ0617+2236 06 17		189.040				IC443	SNR	3FGL J0617.2+2234	
		195.140		82.0 3.4	323.1+/-7 5.2 8.1+/-2 1.6		Pulsar	3FGL J0633.9+1746	 5D7010654 + 4514
1AGLRJ0057+4554 00 57 1AGLRJ0713+3340 07 12		170.730 184.260			8.1+/-2 1.0 15.7+/-3 7.1		AGN unclassified AGN unclassified		5BZQJ0654+4514 5BZQJ0719+3307
1AGLRJ0713+3340 07 12 1AGLRJ0723+7121 07 22		143.980				S50716+714	BL Lac	3FGL J0721.9+7120	5BZBJ0721+7120
					725.7+/-7 18.3		Pulsar	3FGL J0835.3-4510	
		284.160			38.4+/-3 3.1		unidentified	3FGL J1018.9-5856	
1AGLRJ1022-5751 10 21		284.040			23.4+/-3 2.5		unidentified	3FGL J1023.1-5745	
1AGLRJ1022-5825 10 21	37.4 -58 25 21.0	284.360	-1.060	3.1	11.1+/-3 2.9		unidentified	3FGL J1021.9-5815	
AGLJ1029-5836 10 29	9 24.1 -58 36 29.0	285.320	-0.680	7.0	22.9+/-3 3.8	0FGLJ1028.6-58	817 Pulsar	3FGL J1030.0-5809	
		287.550				EtaCar	CWB	3FGL J1043.6-5930	
		286.620			15.6+/-3 5.2		unidentified	3FGL J1044.5-5737	
1AGLRJ1048-5843 10 47		287.430				1048-5832	Pulsar	3FGL J1048.2-5832	
		286.150			34.2+/-2 8.0		unidentified	3FGL J1057.9-5227	
1AGLRJ1105+3818 11 04 1AGLRJ1107-6115 11 06		179.579 290.660			16.2+/-3 9.7 12.0+/-3 9.1	Mkn421	BL Lac	3FGL J1104.4+3812 3FGL J1105.2-6113	5BZGJ1105+3946
1AGLRJ1107-0113 11 00 1AGLRJ1112-6104 11 12		290.000 291.240			23.0+/-3 9.7		unidentified unidentified	3FGL J1105.2-0113 3FGL J1111.9-6038	
1AGLJ1222+2851 12 22		196.090				WComae(ON+2)			5BZBJ1221+3010
1AGLJ1222+2001 12 22 1AGLJ1228+0142 12 28		290.040			18.8+/-4 2.8	3C273	FSRQ	3FG L J1229.1+0202	
1AGLJ1238+0406 12 38		294.740			16.4+/-0 0.6		FSRQ		5BZQJ1239+0443
1AGLJ1256-0549 12 56	33.2 -05 49 42.6	305.270	57.020	11.8	46.8+/-5 10.6	3C279	FSRQ	3FGL J1256.1-0547	5BZBJ1258-0447
1AGLJ1412-6149 14 12	06.1 -61 49 32.6	312.300	-0.430	2.4	16.2+/-0 14.3		unidentified	3FGL J1409.7-6132	
1AGLRJ1417-6108 14 17		313.130			62.2+/-4 13.5		unidentified	3FGL J1420.0-6048	
1AGLJ1506-5859 15 06		319.520			19.3+/-3 7.1		unidentified	3FGL J1509.4-5850	
1AGLRJ1513-0906 15 13		351.373			80.6+/-4 2.0	PKS1510-089	FSRQ	3FGL J1512.8-0906	5BZQJ1512-0905
1AGLJ1624-4946 16 24		334.090			27.4+/-4 7.5	 05 227 9	unidentified	3FGL J1622.9-5004	 5D71111625 2527
1AGLRJ1625-2531 16 25 1AGLJ1639-4702 16 39	19.9 - 25 30 45.5 05.5 - 47 02 28.2				28.1+/-2 3.7 59.0+/-4 11.2		AGN unidentified	3FGL J1625.7-2527 3FGL J1638.6-4654	5BZUJ1625-2527
1AGLJ1039-4702 10 39 1AGLJ1709-4428 17 09						PSRJ1709-4429		3FGL J1709.7-4429	
1AGLJ1736-3235 17 36					54.4+/-4 15.8		unidentified	3FGL J1737.3-3214	
1AGLJ1746-3017 17 46		358.890			43.1+/-4 12.7		unidentified	3FGL J1747.2-2958	
1AGLJ1801-2317 18 01			-0.180		42.6+/-3 5.0	W28	SNR	3FGL J1801.3-2326	
1AGLRJ1803-3941 18 02	46.5 -39 40 36.5	352.450	-8.440	10.4	22.7+/-2 20.6		unidentified	3FGL J1802.6-3940	5BZQJ1802-3940
1AGLRJ1805-2149 18 05			-0.270		28.0+/-4 3.2		unidentified	3FGL J1805.6-2136	
1AGLRJ1807-2103 18 07		9.300				AGLJ1807-2104			
1AGLRJ1809-2333 18 09			-1.910		60.7+/-4 4.5		unidentified	3FGL J1809.8-2332	
1AGLJ1815-1732 18 15					17.9+/-0 1.7		unidentified	3FGL J1814.1-1734	
1AGLRJ1822-1456 18 22			-0.530		73.1+/-5 4.8		unidentified	3FGL J1821.6-1436	
1AGLJ1827-1247 18 26 1AGLRJ1833-2057 18 33		18.790 12.240 -				 PKSB1830-210	unidentified FSRQ	3FGL J1826.1-1256 3FGL J1833.6-2103	5B7011833 2103
1AGLJ1836+5923 18 36		88.845 Z			38.7+/-1 5.1		unidentified	3FGL J1835.0-2105	-
1AGLRJ1839-0550 18 39		26.320			43.7+/-4 14.7	J1838-0549	Pulsar	3FGL J1838.9-0537	502031 0 41 + 3300
1AGLRJ1848+6709 18 48		97.540			18.0+/-1 8.2		FSRQ	3FGL J1849.2+6705	5BZOJ1842+6809
1AGLJ1856+0122 18 55		34.670 -			38.7+/-3 19.6	W44	SNR	3FGL J1857.8+0129	
1AGLJ1901+0429 19 01	20.7 04 29 38.5	38.060 -			13.3+/-3 18.5		unidentified	3FGL J1900.3+0411	
1AGLJ1908+0614 19 08	08.4 06 14 34.5	40.390 -	-0.850	9.9	32.8+/-3 16.2		unidentified	3FGL J1907.9+0602	
1AGLJ1923+1404 19 22	53.7 14 03 45.2	49.000 -	-0.420	4.7	13.8+/-3 7.6		unidentified	3FGL J1923.2+1408	
1AGLRJ2016+3644 20 16		74.590		8.0	20.3+/-2 18.0		SNR	3FGL J2015.6+3709	5BZUJ2015+3710
AGLJ2019+3816 20 19		76.240		6.3	16.4+/-2 19.7		unclassified		5BZUJ215+3710
1AGLRJ2021+3653 20 21		75.240		19.3		PSRJ2021+365		3FGL J2021.1+3651	
1AGLRJ2021+4030 20 21		78.240		41.2	116.6+/-3 21.8		unidentified	3FGL J2021.0+4031	
AGLJ2024+4027 20 24 1AGLRJ2027-0747 20 26		78.560 36.839 -		4.0 9.2	12.9+/-3 22.1 16.7+/-2 5.3		unidentified FSRQ	 3FGL J2025.6-0736	 5BZO12025 0725
1AGLRJ2027-0747 20 20 1AGLRJ2030-0617 20 30		30.839 -		9.2 4.3		 2FGLJ2030.3-(•	3FGL J2023.0-0736 3FGL J2030.2-0622	
1AGLRJ2030-0017 20 30		80.110		4.3		0FGLJ2030.3-0		3FGL J2030.2-0022	
1AGLRJ2031+4150 20 30		79.920		8.0	20.2+/-2 21.7		unidentified	3FGL J2032.5+4032	
1AGLJ2231+6109 22 31		106.820		16.2		PSRJ2229+611		3FGL J2229.0+6114	
1AGLRJ2254+1602 22 53		86.106 -3			122.6+/-3 6.3	3C454.3	FSRQ		5BZQJ2253+1608
									-

The source table obtained after the processing of the source list on the recent "deep maps", reporting the updated fluxes, the below:

The OB data archive and source detection procedure

The OB data archive is created with the execution of the "standard analysis" OB pipeline at the ADC at the end of an OB, to remove data corresponding to slews and occasional losses of fine-pointing attitude and build the official OB data archive. Moreover scientific maps, counts, exposure and the diffuse emission one, were created selecting confirmed events and excluding albedo contaminated time intervals or those at offaxis angles $> 60^\circ$. The ``pointing mode" OB archive is composed of 101 OB covering a wide timespan with non uniform exposures (ranging from 1d to 45dd). All the OB were recently reprocessed with the last software release (calibration I0023).

An ADC procedure has been developed to create scientific maps from the complete pointing mode dataset and also in the future from the complete AGILE-GRID dataset up to now, including the data acquired in Spinning mode. Scientific maps of 50°x50° size were created centered on 12 centers to allow analysis of all the source. The procedure developed for the scientific analysis in the E > 100 MeV band is based on source detection at fixed preselected positions using the AGILE Maximum Likelihood (ML). It consists of two main steps: I) preliminary ML multisource analysis to evaluate all the source fluxes together, to allow fluxes comparison; II) execution of a further ML task run of each source separately after fixing the nearby source flux and the Gal/Iso diffuse emission parameter to estimate the sqrt(TS) parameter for each of them, so that it represents the significance (see below).

Source detection method

The detection method used is the ML. The significance of a source detection is given by the "test statistic" TS, defined as -2 times the log of the likelihood ratio, which according to the Wilks' theorem follows the χ^2 distribution ([12], [13]). We express this source significance as a number of standard deviations "n" of a Gaussian distribution. Likelihood ratio is built considering for the background only included in the AGILE software for the ML "multi-source" analysis.

References

[1] Pittori, C., Verrecchia, F., Chen, A., et al. 2009, A&A, 506, 1563 [2] Tavani, M., Barbiellini, G., Argan, A., et al. 2008, for the AGILE Collaboration, NIM A, 588, 52 [arXiv:0807.4254] [3] Tavani, M., Barbiellini, G., Argan, A., et al. 2009a, for the AGILE Collaboration, A&A, 502, 1015

Results and future developments:

The processing of the known y-ray source sample allowed to obtained 61/65 significant sources (in Fig. 1 we show the Aitoff plot of the complete sample) where 4 sources detected by AGILE-GRID during flares of timescale of weeks, were not significant on the 2.3 yrs maps. Sources not detected are:

- 1AGL J1222+2851/WComae, observed with a dedicated ToO; sqrt(TS)=2.5, Flux_UL(E>100MeV)=1.6e-07 ph/cm^2/s; - 1AGL J1238+0406, transient source of Pacciani et al. 2011, detected in flare during 3C 273 observation; sqrt(TS)=2.2, Flux_UL(E>100MeV)=1.6e-07 ph/cm^2/s;

- 1AGL J1412-6149, near PSRJ1410-6132/G312.4-0.4; sqrt(TS)=2.4,

Flux_UL(E>100MeV)=1.6e-07 ph/cm^2/s;

hypothesis the AGILE diffuse y-ray model ([14], [15]). We used the task "AG multi4" - 1AGLJ1815-1732, near PSRJ1815-1738/HESSJ1813-178; sqrt(TS)=2.0, Flux_UL $(E > 100 \text{ MeV}) = 1.8e-07 \text{ ph/cm}^2/\text{s}.$

The procedure developed will be used for the processing of all the sources in the new catalogue on the same scientific maps.

[13] Mattox, J. R., Bertsch, D. L., Chiang, J., et al. 1996, ApJ, 461, 396 [14] Giuliani, A., Chen, A., Mereghetti, S., et al. 2004, Mem. SAIt Suppl., 5, 135 [15] Giuliani, A., et al. 2011, in preparation [16] Giuliani, A., Cocco, V., Mereghetti, S., Pittori, C., & Tavani, M. 2006, NIM A, 568, 692 [17] Tavani, M., Sabatini, S., Pian, E., Bulgarelli, A., et al. 2009a, ApJL, 698, L142 [18] Tavani, M., Bulgarelli, A., Piano, G., et al. 2009b, Natur, 462, 620 [19] Sabatini, S., et al. 2010, ApJL, 712, L10 [20] Giuliani, A., et al. 2010, accepted by A&A, [arXiv:1005.0784] [21] Bulgarelli, A., et al. 2010, submitted to A&A [22] McLaughlin, M. A., Mattox, J. R., Cordes, J. M., Thompson, D. J., 1996, ApJ, 473, 763 [23] Chen, A.W., et al. 2010, submitted to A&A [24] Abdo, A.A., et al. 2009, ApJS, 183, 46 [25] Abdo, A.A., et al. 2010, ApJ, 715, 429

[26] Tavani, et al. 2011, Science, 331, 736 [27] Abdo, A.A., et al. 2011, Science, 331, 739

[4] Verrecchia, F., Pittori, C., Chen, A., et al., 2013, A&A, 538, A137 [5] Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071 [6] Barbiellini, G., Bordignon, G., Fedel, G., et al. 2001, AIP Conf. Proc., 587, 754 [7] Prest, M., Barbiellini, G., Bordignon, G., et al. 2003, NIM A, 501, 280 [8] Feroci, M., Costa, E., Soffitta, P., et al. 2007, NIM A, 581, 728 [9] Labanti, C., Marisaldi, M., Fuschino, F., et al. 2006, SPIE, 6266, 62663 [10] Labanti, C., Marisaldi, M., Fuschino, F., et al. 2009, NIM A, 598, 470 [11] Perotti, F., Fiorini, M., Incorvaia, S., Mattaini, E., & Sant'Ambrogio, E. 2006, NIM A, 556, 228 [12] Chen, A.W., et al. 2011, in preparation