AGILE as particle monitor

G. Piano

A. Argan, M. Tavani, A. Trois

13th AGILE Workshop "AGILE: 8 and counting"

The AGILE orbit

- Quasi-circular orbit with an average altitude of 500 km
- Small inclination \rightarrow i = 2.7°
- Low particle background \rightarrow optimal configuration for γ -ray astronomy
- Inner Earth magnetosphere $(1.0 \le L \le 1.2)$

L-shell \rightarrow set of magnetic field lines (shell) crossing the magnetic equator at L Earth radii (McIIIwain, 1961)

Geomagnetic characteristics of the AGILE orbit

AGILE L-shell exposure-time map

April 14 – May 5 2015

Trapped particles in magnetosphere

- Gyromagnetic revolution around magnetic field lines
- Bouncing motion between mirror points
- Longitudinal drift of the guiding center (ions drift westwards, electrons eastwards)

L-parameter \rightarrow invariant

Trapped particles keep moving into a given magnetic L-shell

The AGILE tracker as a charged-particle detector

- AGILE has been conceived to detect γ-rays from astrophysical sources:
 - charged particles (trapped in the magnetosphere) represent the strongest background
 - p/γ ratio $\approx 10^4$
- Most of the charged particles are rejected onboard:
 - Anticoincidence (AC) system + veto logic
- But...
- Many residuals particles are detected and tracked anyway:
 - No AC panels at the bottom side
 - Lateral AC panels have a less restrictive veto logic

"Particle" events

- All events flagged as "P" by our ground pipeline
- Complex topology
- Most of them come from the bottom of the GRID (no AC panels)
- Standard Kalman filter reconstructs the track from top to bottom ($0^{\circ} \le \theta \le 90^{\circ}$)
- → difficult reconstruction of the incoming direction

"Gold" events

If:

- ✓ "good" single tracks (Rx and Rz ≤ 1.3)
- ✓ signal in 1 lateral AC panel
- ✓ no signal in the last tracker plane
- ✓ no signal in the mini-CAL
- Discrimination between "top-down" and "bottom-up" tracks
- Bottom-up events have bottom-up track reconstruction (inverted Kalman)
- $0^{\circ} \le \theta \le 180^{\circ}$ distribution
- "Gold"/"Particle" event ratio ≈ 1%
- → reconstruction of the incoming direction

Testing the AGILE reconstruction strategy for "Gold" events

Simulation: monocromatic electrons from a given direction (θ_s , ϕ_s)

- 200000 simulated events inside the tracker
- E = 100 MeV
- $(\theta_s, \phi_s) = (150^\circ, 45^\circ) \rightarrow \text{bottom-up events}$
- Reconstruction strategy for "Gold" events applied to the simulated electrons

Simulations

785 events have been reconstructed as "gold" events $\rightarrow \sim 0.4\%$ of the simulated events are reconstructed as "gold" 712 events have been reconstructed as bottom-up "gold" events $\rightarrow 91\%$ of the reconstructed "gold" events

"Gold" events 1 week - Pointing (1585-1683) E < 100 MeV

"Gold" events 1 week - Spinning (15000-15098) E < 100 MeV

Pitch-angle distribution

"Particle" and "Gold" events 1 week - Spinning (15000-15098) E < 100 MeV

- Large statistics → Pitch angle distribution for "Particle" events is similar to "Gold" events
- Quasi-symmetrical distribution → "dumbbell"

AGILE as a particle detector: experimental evidences

- Most of the charged particle detected by AGILE are bottom-incoming, due to the onboard trigger logic
 - AGILE \rightarrow detector for top-incoming photons
 - AGILE \rightarrow detector for bottom-incoming particles
- AGILE is able to constantly monitor the trapped-particle motion in connection with the local geomagnetic field lines (pitch angle distribution)
 - In Spinning mode AGILE is continuously sampling the pitch-angle range of the particles → complete coverage of the pitch-angle distribution (0°-180°)
- AGILE tracker has an accurate time resolution → burst detector
 - time tagging accuracy $\approx 2 \ \mu s$
 - dead time (single event acquisition) \approx 200-300 μs

AGILE: looking for particle bursts

Strategy for finding bursts

- Binning time = 4s, 8s, 16s, 32s
- Sampling time = 4s
- Background calculated as the average counts of the previous 10 time bins $\left((bgd)_i = \frac{\sum_{j=i-10}^{i-1} n_j}{10}\right)$
- Poisson statistics assumed $\rightarrow \sigma_i = \sqrt{(bgd)_i}$
- Burst \rightarrow if $n_i \ge 5\sigma_i + (bgd)_i$

Particle burst (PB)

Potential scientific objectives

- Monitoring solar activity
 - Solar flare \rightarrow geomagnetic storm \rightarrow variation of the particle count rate

- Testing the lithospheric-magnetospheric coupling
 - Resonant interaction between seismo-electromagnetic emission (SEME) and high-energy particles trapped in the magnetosphere

Solar flare: March 7, 2012

- Observed by Fermi-LAT in γ-rays (E > 100 MeV)
- The Sun was ~1000 times brighter than the Vela pulsar
- (The AGILE tracker cannot detect γ-rays from the Sun because of the solar panel constraints)

Monitoring solar activity

Monitoring solar activity

- Testing the lithospheric-magnetospheric coupling
 - Resonant interaction between seismo-electromagnetic emission (SEME) and high-energy particles trapped in the magnetosphere

Testing the lithospheric-magnetospheric coupling

The model

(Galper et al., 1989, 1995; Voronov et al., 1990; Aleshina et al., 1992, Pustovetov et al., 1993; Aleksandrin et al., 2003)

- Seismo-electromagnetic emission (SEME) produced in the lithosperic preparation zone
- Waves are captured in the ionospheremagnetosphere transition region (300-500 km)
- ULF waves (hundred Hz) propagate as Alfvén waves along the magnetic lines
- Bounce resonance with trapped particles in the magnetosphere
- Pitch angle diffusion → lowering of the bouncemotion mirror points
- Particles precipitate and longitudinally drift
- Particle bursts propagate for minutes/hours along the same geomagnetic L-shell

Geomagnetic correlation between PBs and seismic events

EQ L-shell is strongly dependent on the projection altitude

- L-shell of the PB detected by AGILE
 - from the position of the satellite
 - L-shell of the earthquake
 - vertical projection of the epicenter at a given altitude
 - the altitude is related to the "capture" of the SEME wave into a geomagnetic field tube (propagation as Alfvén waves)

Seismic regions geomagnetically correlated with AGILE

Pakistan Nepal China Japan Indonesia California Mexico Peru Chile

L-distribution for earthquakes

Remarks

The instrument

- Innovative approach, event selection and reconstruction strategy for AGILE \rightarrow charged-particle detector
- Imaging capability + spinning mode observations → complete coverage of the pitch-angle range for trapped particles in the lower magnetosphere
- Accurate time resolution \rightarrow PB detector

The orbit

- Quasi-equatorial low-Earth orbit → not directly influenced by geomagnetic storms induced by solar flares
- Geomagnetically correlated with very active seismic regions

AGILE: optimal configuration to test the lithospheric-magnetospheric coupling

Perspectives

Testing the lithospheric-magnetospheric coupling

- statistical approach: comparing the geographical and <u>geomagnetical</u> distribution of AGILE PBs and seismic events → time-correlation
- "case study" approach: comparing space-observable parameters from other satellites (total electron content, electron density, ongoing longwave radiation, ...) and PBs detected by AGILE, during some large-magnitude seismic events → cross-correlation

Work in progress... STAY TUNED!