PAMELA results and challenges

Piergiorgio Picozza INFN and University of Rome Tor Vergata

11th AGILE Science Workshop: "Gamma-rays and Galactic Cosmic Rays", May 16-17, 2013

ASI Headquarters, Via del Politecnico, Rome

PAMELA

The Dawn of the Physics of PAMELA

Antiproton/proton ratio before 1990

Balloon data : Positron fraction before 1990

Antimatter Search

Wizard Collaboration
MASS - 1,2 (89,91)
TrampSI (93)
CAPRICE (94,97,98)

BESS (93, 95, 97, 98, 2000)
Heat (94, 95, 2000)
IMAX (96)
AMS-01 (1998)

ANTIMATTER LIMITS

Space Missions and LDF

Payload for Antimatter Matter Exploration and Light Nuclei Astrophysics

3

WiZard Space Program

M 89)	M 91	TS 93	C 94	C 97	C 98		← AGILE → GLAST
1989 · 2007	1990 -	1991 · 1	992 • 1993	• 1994 • •	1995 · 1996 · 1997 ·	1998 · 1999 ◀━━━►	· 2000 · 200	01 · 2002 · 2003 · 2004 · 2005 · 2006 ·
	ļ				SILEYE-1	NINA-1	NINA-2	Alteino-SILEYE-3

PAMELA Collaboration

PAMELA Instrument

GF ~21.5 cm²sr

Mass: 470 kg

Size: 130x70x70 cm³

PAMELA Instrument

1.3

Orbit Characteristics

- Low-earth elliptical orbit
- 350 610 km
- Quasi-polar (70° inclination)
- SAA crossed

Antiparticles

Antimatter and Dark Matter Search

Antimatter limits

Antiproton Flux

Antiproton to proton ratio (0.06 GeV - 180 GeV) Simon et al. (ApJ 499 (1998) 250) Ptuskin et al. (ApJ 642 (2006) 902) <u>d/d</u> 10⁻³ 10-4 Donato et al. (PRL 102 (2009)BESS 2000 (Y. Asaoka et al.) 071301) 10⁻⁵ BESS 1999 (Y. Asaoka et al.) BESS-polar 2004 (K. Abe et al.) CAPRICE 1994 (M. Boezio et al.) Δ CAPRICE 1998 (M. Boezio et al.) HEAT-pbar 2000 (A. S. Beach et al.) PAMELA 10⁻⁶ 1 1 1 1 1 **10**⁻¹ 10² 10 1 kinetic energy [GeV]

Positron ratio

Electron flux

PAMELA Electron flux

PAMELA and FERMI electrons

Positron flux

DM annihilations

DM particles are stable. They can annihilate in pairs.

A Challenging Puzzle for Dark Matter Interpretation

Example: Dark Matter

Phys.Rev.D79:103529,2009

200

200

Bergström, Bringmann & Edsjö (2008) 0.2 PAMELA HEAT 0.10.05BM5' ($m_{\chi} = 132 \text{ GeV}$) 0.02 BM3 $(m_{\gamma} = 233 \text{ GeV})$ background 0.0110 2050100 5 E_{e^+} [GeV]

 $e^+/(e^++e^-)$

Majorana DM with **new** internal bremsstrahlung correction. NB: requires annihilation cross-section to be 'boosted' by >1000.

Kaluza-Klein dark matter

A NEUTRON STAR WITH A STRONG MAGNETIC FIELD:

FAST ROTATING PULSAR (P = 33 msec)

L(spindown) = 5 10³⁸ erg/s

Example: pulsars

A Challenging Puzzle for CR Physics

produced: significant increase expected in the p/p and B/C ratios.

Y. Fujita Phys.Rev.D80:063003,2009

N.J. Shaviv et al., PRL 103 (2009) 111302;

Proton and Helium Spectra

Proton and Helium fluxes

Science 332,69 (2011)

Proton and Helium fluxes

Proton to Helium ratio

Proton and Helium fluxes

Hydrogen and Helium Isotopes

Ratios

Boron and Carbon nuclei Spectra

ICRC##1079

C/O ratio

Solar Modulation of galactic cosmic rays

- Study of solar modulation
- Study of charge sign dependent effects
- Asaoka Y. et al. 2002, Phys. Rev. Lett. 88, 051101), Bieber, J.W., et al. Physi-cal Review Letters, 84, 674, 1999.
- J. Clem et al. 30th ICRC 2007
- U.W. Langner, M.S. Potgieter, Advances in Space Research 34 (2004)

Cosmic-Ray Antiprotons and DM limits

D. G. Cerdeno, T. Delahaye & J. Lavalle, arXiv: 1108:1128 **Antiproton flux predictions for a 12 GeV WIMP annihilating into different** mass combinations of an intermediate two-boson state which further decays

Time Dependence of PAMELA Proton Flux

Fluxes in time PAMELA

range: 0.4 - 0.71 GeV

December 2006 Solar particle events

000712710 00121

Dec 13th largest CME since 2003, anomalous at sol min X

X3.4 solar flare,

December 13th 2006 He differential spectrum

GOES Space Environment Monitor

10⁻¹

Natts/m, 10⁻¹ 10⁻¹ 10⁻¹ 10⁻¹ 10⁻¹ 10⁻¹

GOES Space Environment Monitor December 14th 2006: Forbush decrease 10 10 X-ray 10 Natts/m' 10 10 10 10 10 10 Protons 10 ides/cm*sec 10 1/1/07 00:00 - 05:50 Arbitrary units 10 10 14/12 16:00 - 18:00 10 10 10 Low energy tail of Dec 13th event 100 Magnetic Field -100 200 10⁻¹ 120 110 \$ 100 Neutron Monitor Solar Quiet spectrum 10⁻² Below galactic spectrum: Start of Forbush decrease 10⁻³ **Decrease of primary spectrum** Arrival of magnetic cloud from CME of Dec 13th 10-4 Shock 1774km/s (gopalswamy, 2007) **Decrease of Neutron Monitor Flux** 10⁻¹ 10 GeV

Forbush decrease – protons

Rigidity from 1.57 to 5.70 GV

Forbush decrease – protons, electrons and positrons

Rigidity from 1.57 to 5.70 GV

proton flux during the May 17th flare

Radiation Belts

Proton flux over the PAMELA orbit

PAMELA trapped antiprotons

O. Adriani et al., APJL 737 L29 (2011); arXiv:1107.4882

Distributions of sub-cutoff proton counts

Proton gradients in the heliosphere – PAMELA and Ulysses

Gradients in the Heliosphere, PAMELA & ULYSSES

Comparison of the proton flux measured between 1.5 and 1.57GV by PAMELA and ULYSSES as a function of time Bremen, 2010/07/18

Latitudinal gradients

Radial gradients

Thanks!

http:// pamela.roma2.infn.it