#### MHD Simulations of the Jet in the Crab Nebula

# A. Mignone<sup>1</sup>, E. Striani<sup>2</sup>, M. Tavani<sup>2,3</sup>, A. Ferrari<sup>1,3</sup>

<sup>1</sup>Dipartimento di Fisica, Università di Torino <sup>2</sup>IASF/IAPS, Università di Roma Tor Vergata <sup>3</sup>CIFS, Torino

#### Outline

- **1**. Observational Evidence
- 2. Numerical Models of Relativistic MHD jets
- **3**. Results
- 4. Summary

#### **Observational Evidence**

- X-ray observation (Chandra) show the emergence of a bipolar jets and extending to the SE and NEW of the pulsar
- A region of diffuse emission (anvil) may be associated with shocks and marks the base of the X-ray and optical jet
- Knots of emission are seen along the jets
- In the SE jet material flows with v/c~0.4 slowing down to ~0.02 into the nebula



# Jet Wiggling

SE jet morphology is "S" shaped and show remarkable time variability (Weisskopf)



- Jet wiggling in other PWN, Vela (Durant 2013)
- $\succ$   $\rightarrow$  evidence for some kind of (intrinsic) flow instability

#### Jet instability in laboratory

- Magnetic field reconnection in "islands" related to kink instabilities
- Reconnection detected in tomakaks as "sawthooth oscillations" and/or runaway acceleration
- 3. Particle acceleration in kink-driven reconnection events
- A framework for the Crab gamma-ray flares originating in the "anvil" region.



A.L. Moser, P. Bellan, Nature , 482, 379 (2012)

#### Kennel-Coroniti picture of the Crab Nebula



#### **Pulsar Wind Model**

MHD termination shock

PSR wind magnetization



KC solution in the toroidal shock:  $\sigma \leq 0.01$ 

The *sigma-problem*: large magnetic field required for the acceleration up to gamma-ray energies, low magnetic field in the shock region

## Origin of the Jet

- Jet forms downstream of the wind termination shock
- Magnetic fields confine matter towards polar axis
  - → "<u>tooth-paste</u>" effect: hoop stress of the azimuthal magnetic field carried by the wind (Lyubarsky 2002)



Models confirmed by 2D axisymmetric numerical simulations (Komissarov & Lyubarski 2003,2004, Del Zanna et al. 2004, Bogovalov et al. 2005)

#### Jet Origin: previous results

- > 2D MHD simulations (do not allow smal pitch azimuthal perturbations)
- For moderate/large  $\sigma = B^2/(8\pi\rho c^2\gamma^2)$  magnetic hoop stress suppresses high velocity outflows in the equatorial plane and divert them towards the polar axis partially driving the super-fast jet<sup>1</sup>





<sup>1</sup>Del Zanna et al, A&A (2004) 421,1063

#### A 3D MHDR Jet Model

We solve the equations for a relativistic perfectly conducting fluid describing energy/momentum and particle conservation (relativistic MHD equations)

$$\frac{\partial}{\partial t}(\rho\gamma) + \nabla \cdot (\rho\gamma\mathbf{v}) = 0$$
  
$$\frac{\partial\mathbf{m}}{\partial t} + \nabla \cdot \left[w\gamma^{2}\mathbf{v}\mathbf{v} - \mathbf{B}\mathbf{B} - \mathbf{E}\mathbf{E}\right] + \nabla p_{t} = 0$$
  
$$\frac{\partial\mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0$$
  
$$\frac{\partial\mathcal{E}}{\partial t} + \nabla \cdot (\mathbf{m} - \rho\gamma\mathbf{v}) = 0$$
  
$$\mathcal{E} = w\gamma^{2} - p + \frac{\mathbf{B}^{2} + \mathbf{E}^{2}}{2}$$

- We use the PLUTO<sup>1,2</sup> code for astrophysical fluid dynamics (freely distributed <u>http://plutocode.ph.unito.it</u>)
- > Numerical resolution 320 x 320 x 768 zones (  $\approx$  20 point on the jet)

#### **Numerical Setup**

- Initial conditions from Del Zanna et al. (2004)
- Inside 0.2 < r < 1 (ly): freely expanding supernova ejecta (3 M<sub>sun</sub>, E = 10<sup>51</sup> erg) selfsimilar velocity increasing with r
- Jet enters at the lower z boundary
- Pulsar wind structure not modelled: assume jet already formed as the result of the collimation process
- > Jet radius  $R_i = 3 \times 10^{16}$  cm
- Computational domain:
   x,y∈[-25,25] R<sub>j</sub>/c, z∈[0, 80] R<sub>j</sub>/c;
   (≈ 1.6 ÷ 2.5 ly)



#### **Model Parameters**

Jet flow modeled by 5 parameters:

- 1. Sonic flow Mach number:  $M_s = v_i/c_s$
- 2. Bulk Lorentz factor:  $\gamma_j = (1-v_j^2)^{-1/2}$
- 3. Jet/ambient dens. contrast:  $\eta = \rho_i / \rho_e$
- 4. Magnetization:  $\sigma = B^2/(8\pi\rho\gamma^2);$

5. Pitch angle:

 $P = RB_z / B_{\phi}$ 



#### Parameter Constraints

#### Parameters are fixed through the 2D axisymmetric results

- $1.3 \le M_s \le 2 \rightarrow \text{hot jet}$
- $2 \leq \gamma \leq 4$
- σ = ?
- Density contrast  $\eta = 10^{-6}$
- Azimuthal field implies Pitch  $\rightarrow 0 (B_z = 0)$



- > We consider hollow ( $\eta = 10^{-6}$ ), hot ( $M_s = 1.7$ ) jets initially carrying purely axial current ( $B_{\phi} > 0$ ,  $B_z = B_R = 0$ )
- $\succ$  p(R) , B<sub> $\phi$ </sub>(R) are set by radial momentum balance across the jet
- $\succ$  This leaves  $\gamma$  and  $\sigma$  as free parameters

#### Simulation Cases

> We explore different values of Lorentz factor  $\gamma$  (= 2, 4) and magnetization  $\sigma$  (= 0.1, 1, 10) for a total of 6 different cases:

| Case | γ | σ   | Plasma $\beta$ |
|------|---|-----|----------------|
| A1   | 2 | 0.1 | 4.5            |
| A2   | 2 | 1   | 0.6            |
| A3   | 2 | 10  | 0.2            |
| B1   | 4 | 0.1 | 11.4           |
| B2   | 4 | 1   | 1.2            |
| B3   | 4 | 10  | 0.15           |

Random perturbations are applied of helical and fluting types at high and low frequencies

#### Results: Case A2



Sigma distribution



#### Results: Case A2

www.videomach.com

| Case | γ | σ   |
|------|---|-----|
| A1   | 2 | 0.1 |
| A2   | 2 | 1   |
| A3   | 2 | 10  |
| B1   | 4 | 0.1 |
| B2   | 4 | 1   |
| B3   | 4 | 10  |

Pressure distribution



#### Results: Case B2

www.videomach.com

| Case | γ | σ   |
|------|---|-----|
| A1   | 2 | 0.1 |
| A2   | 2 | 1   |
| A3   | 2 | 10  |
| B1   | 4 | 0.1 |
| B2   | 4 | 1   |
| B3   | 4 | 10  |

#### Sigma distribution



#### Results: Case B1

| Case | γ | $\sigma$ |
|------|---|----------|
| A1   | 2 | 0.1      |
| A2   | 2 | 1        |
| A3   | 2 | 10       |
| B1   | 4 | 0.1      |
| B2   | 4 | 1        |
| B3   | 4 | 10       |

Sigma distribution



#### **General Features**

- Jets have small propagation speed (0.02c - 0.08c)
- Large over-pressurized turbulent cocoons
- Collimated central spines moving at mildly relativistic speeds
- Cocoon less magnetized than central spine
- Large-scale deflections may be present



#### www.videomach.com

#### **General Features**

- 3D models very different from
   2D counterparts<sup>1</sup>:
- Strong toroidal configurations expected to become unstable to current driven modes. Most unstable mode m=1 (kink)
- Jet develops non-axisymmetric structures with large time-dependent deflections off the longitudinal axis
- Deflection time-scale of the order of a few years



#### **General Features**

Wiggling and deflection more pronounced at the terminal bow shock where magnetic field is amplified:



#### Jet Head Position



Jets are slow because of large density contrast ( $\rho_j / \rho_e < 10^{-6}$ )
 Faster jets reach the outer edge of the expanding nebula

#### Magnetic energy vs kinetic energy

$$\bar{E}_{\rm em}(t,z) = \left\langle \frac{\boldsymbol{B}^2 + \boldsymbol{E}^2}{2}, \chi \right\rangle$$

 $\bar{E}_{kin}(t,z) = \langle \rho \gamma(\gamma-1), \chi \rangle$ 

- Evolution of the horizontallyaveraged magnetic and kinetic energy, and σ
- Periodic oscillations due to jet pinching and shock formation
- γ peaks upstream of shocks, where em and kin energies are smaller, and drops downstream



#### Evolution of the horizontally-averaged $\sigma = \langle B \rangle^2 / \rho \gamma^2$



# Magnetic energy vs kinetic energy Short time scale evolution



#### Jet Deflections

#### > Deflection is quantified using the jet baricenter:



#### Jet Deflections



- Case A2 and A3 (low-speed, moderately/highly magnetized) jets show the largest bending ( > 20 jet radii)
- Larger Lorentz factors (B2, B3) have a stabilizing effect
- Weakly magnetized jets (A1, B1) are less affected by the growth of instability

#### **Flow Inclination**

Flow direction is measured by computing the average angle of the mass flux vector with vertical direction:

$$\bar{\vartheta}_{\pm}(z) = \cos^{-1}\left(\frac{\int (v \cdot \hat{z}/|v|)\chi_{\pm} \, dx \, dy}{\int \chi_{\pm} \, dx \, dy}\right)$$













#### **Flow Inclination**



- Low-speed jets assume a large-scale curved structure
- High-speed jets more parallel and build kicks in proximity of jet's head

#### Magnetic Field Structure

- Magnetic field topology remains mainly toroidal or helical during the propagation
- Azimuthal field has the effect of "shielding" the core preventing interaction with the ambient
- Local pinching events along the jet rapidly evolving, reconnection
- Magnetic field dissipates and becomes turbulent in the cocoon
   (-> randomization)



#### Large scale magnetic dissipation

 $\overline{\Gamma-1}^{,\chi_e}/$ 

$$\bar{E}_{\rm em,j} = \left\langle \frac{B^2 + E^2}{2}, \chi_j \right\rangle, \qquad \bar{E}_{\rm th,j} = \left\langle \frac{p}{\Gamma - 1}, \chi_j \right\rangle$$
$$\bar{E}_{\rm th,j} = \left\langle \frac{B^2 + E^2}{\Gamma - 1}, \chi_j \right\rangle$$

Ratio between magnetic field and thermal energy inside the jet shows periodic oscillations related to the formation of conical shocks

 $\overline{,\chi_e}$ ,

- Outside the jet the ratio is uniform
- Drop at the termination shock
- All energy both magnetic and kinetic dispersed into the cocoon backflow



## Small scale magnetic dissipation

- Maximum current density evolution over short time scales
- Rapidly evolving discontinuities in the jet's head region





www.videomach.com

Case A2, t=0.00 (yrs)



#### **Currents and reconnection**

- Evidence of explosive reconnection events in the termination region, reconnection flashes
- Warning: only numerical resistivity is present in these simulations; physical resistivity should further enhance the reconnection process



## Jet Wiggling & Gamma Flares

 SE jet morphology is
 "S" shaped and show remarkable time
 variability (Weisskopf)



Gamma flares correlated with X-ray emission variabilities in the anvil region and beyond





#### Summary

- > 3D models of azimuthally confined relativistic jets are very different from 2D axisymmetric models:
  - Kink-unstable non-axisymmetric structures with large time-variability
  - Large  $\sigma$  (  $\geq$  1 ) leads to considerable jet deflections
  - Pronounced asymmetric backflows
  - Jet wiggling progressively more pronounced towards the jet head
  - Multiple strong shocks are formed by change of direction
- Low-speed (γ ≈ 2), moderately/highly magnetized jets (σ ≈ 1-10) are promising candidates for explaining the morphology of the Crab jet and the production of high-energy particles (*sigma-problem* solved)
- Rapid variability and reconnection events over time scales of several months/year

Future models will consider the jet-torus connection in 3D and introduce physical resistivity and radiation emission

... hopefully !