

Update on ASTRI/CTA

Giovanni Pareschi

INAF – Osservatorio Astronomico di Brera

The Cherenkov Telescope Array concept

CTA SST array and Dual-Mirror (DM) configuration

LST

- SST array ~70 telescopes (South only → high energy emission mainly expected from galactic sources)
- Possible implementon for the Northern site?
- Must cover >4 km² area
- ~ 4 m telescope with compact / low cost came (spacing ~ $\sqrt{(A_{req}/N_{teles})}$ ~ 200-300 m
- FOV: > 8 deg x 8 deg
- Angular resolution < 0.2 deg

- LOW COST!
- → Target price ≈ 0.5 Meuro/Telescope

Sensitivity & SST array

 SSTs responsible for high energy sensitivity of CTA.

Results for Array I

- Must cover area greater than ~ 4 km² (sensitivity).
- Must have diameter greater than ~ 3.5 m (trigger threshold).

Small size telescope: two possible designs

Fig. 5 The Davies-Cotton design.

Fig. 6 The Schwarzschild-Couder design.

 Single mirror DC is the optical model of the present Cherenkov telescopes

Single mirror DC is the baseline for LST and MST of CTA.

 ASTRI is the Flagship Project of INAF devoted to the development of Cherenkov small-size dual-mirror telescopes in the CTA framework

- ASTRI consists of two sub-projects:
 - Prototype Schwarz-Couder SST-2M and SiPM camera to be installed from fall 2014 at Serra La Nave (INAF Observatory, M⁺ Etna – Catania)
 - Mini-array of ⁷ SST-2M installed at CTA south site

The ASTRI Collaboration

Principal Investigator G. Pareschi

Co-Pls O. Catalano & S. Vercellone Program Manager M. Fiorini System Engineer L. Stringhetti INAF/CTA Responsible P. Caraveo

INAF Institutions

IASF Milano IASF Bologna IASF Palermo INAF HQ Roma OA Brera OA Torino OA Padova OA Padova OA Bologna OA Arcetri OA Roma / ASDC OA Capodimonte OA Catania University Partners Univ. of Padova

Univ. of Padova Univ.. of Perugia

ASTRI Structural design

ASTRI Structural design

Heidenhain strip encoder with 4 scanning heads

7-switch bracket: 2 inductive + 4 electromechanical + 1 joke

Optical Surfaces: M1 and M2

Primary mirror (M1)

18 hexagonal shaped mirrors (11.2 m²)

850 mm face-to-face, 1 m diagonal

3 types of segments

2 actuators + 1 fixed point + 1 tangential constraint

Secondary mirror (M2)

1 monolithic mirror, 1.8 m diameter (2.5 m²)

3 actuators + 3 lateral constraints

Coatings

Primary mirror, M1

Structural implementation: sandwich panel with thin glass skins

ASTRI Primary Mirror: M1: coatings

ASTRI Primary Mirror: storage of the tiles

Mirrors are stored, packaged and shipped back and forth for the coating

ASTRI monolithic secondary mirror

Focal length and PSF assessment with laser-meter and large-format CCD camera

Green -> Photometric Analysis area Blue,yellow -> background estimation area

Original frame

Estimated R80 = 11 mm Criterion R80 = 15 mm

Dark-subtracted frame

ASTRI Secondary Mirror: M2

An ad-hoc vacuum chamber facility (2 m large) has been designed and developed by ZAOT (Italy) for the deposition of the Aluminum coating and the SiO_2 protective layer.

Coating is scheduled from the $22^{nd} - 30^{th}$ of April.

The coating of M2 is composed by $AI+SiO_2$. Three mirrors will be coated.

ASTRI camera

- EASIROC/Cl⁻ based electronics
- Hamamatsu
 SiPM:

Cy $V_{op} = 72.50V$ $V_{op} = 72.30V$ $V_{op} = 72.30V$ $V_{op} = 71.98V$ Pixel C3 MPPC n° 164 T=25 °C $V_{op} = 72.30V$ $V_{op} = 71.98V$

• Mechanical structure:

ASTRI Camera

ASTRI Camera Mechanical Structure

Second mechanical mock-up snapshots

Detection simulation

Image from the ASTRI SST-2M camera of an on-axis simulated gamma-ray event.

The primary gamma-ray signal had an energy of 10 TeV and a core distance of 142.77m.

The night sky background is at a level of 1.9×10^{12} phm⁻² s⁻¹ sr⁻¹ (about three photoelectrons per pixel).

Color-bar shows number of photoelectrons per pixel.

The ASTRI SST-2M Prototype Site

An importan outreach program will be carried out by INAF in collaboration with the Etna Park

SW ASTRI development organization

On schedule for the telescope inauguration at the next Consortium meeting in Catania, September 2014 ③

THE MINI-ARRAY

cta cherenkov tele

ASTRI miniarry expected performance

Energy resolution: ~ 10 % @10 TeV (vs. 20 % di HAWC)

Crab Angular Resolution: 0.06-0.07 deg @10 TeV (improving with the energy) vs. 0.2 deg of HAWC

Possibility of very long integrations on a sample of selected source

Great improvement at low energies if also Not only a technology pathfinet two or more MST are implemented! possible when FERMI and ASTRI SST-2M: Scientific observ.

Science Verification Phase starting in Spring 2015

27

 \mathfrak{t}

0

d

Chile — Cerro Armazones (Antofagasta)

25 km los

Simulation: the Cygnus region

Preliminary ASTRI SST-2M mini-array simulation of the Cygnus region. The simulation is centered on galactic coordinates of 77.7° (longitude) and 1.0° (latitude) and was conducted for a net observing time of 150 hours and for energies greater than 3TeV. TeV source parameters (position, flux, spectral index) were derived from an online catalogue of the Italian Space Agency