Millimeter-Wave and Optical Polarimetric Behavior of Blazars

Iván Agudo
Instituto de Astrofísica de Andalucía
Granada (Spain)

with:

Clemens Thum
José L. Gómez
Sol Molina
Carolina Casadio
Helmut Wiesemeyer
Alan Marscher
Svetlana Jorstad
Valeri Larionov

Instituto de Astrofísica de Andalucía
Granada (Spain)
Essential ingredients:

- The gravitational potential of the rotating BH
- Material from the rotating accretion disk
- Co-rotating magnetic fields

Studying magnetic fields is crucial to understand the jet phenomenon at all scales

McKinney & Blandford (2009)
Location of short millimeter emission region

Marscher et al. 2008, 2010; Agudo et al. 2011a,b; Fuhrmann et al. 2014; From et al. 2015

mm emission region located at [~1, ~10] pc from central engine
Blazars display optically thin radiation at short millimeter wavelength in general.

- Not affected by opacity effects like at cm wavelength (angle rotation, depolarization, and shift of the emission region towards further downstream regions)
- Few exceptions happen for flaring sources only
Optical emission region in the jet not so easy to locate
Degenerate problem, therefore also at γ-rays

Millimeter and Optical Polarimetric Behavior of Blazars, Iván Agudo (IAA-CSIC)
This work showed the value of mm-VLBI and optical polarimetry for the study of blazars and motivated the community to intensify their pol. obs.
• Superluminal jet ejection coincident in time with:
 - Gamma-ray flare
 - Optical flare
 - Radio and millimeter flare
 - Sharp optical polarization peak
 - End of optical polarization swing \(\Delta \chi \approx 700^\circ \)

• If simultaneous, these events must be all produced at the same location (causality arguments)

• For the case of PKS 1510-089, such site, i.e. the innermost VLBI jet feature (radio core), is located at \(~20\, \text{pc}\) from the central engine.

PKS 1510-089

Marscher et al. (2010)
If simultaneous, these events must be all produced at the same location (causality arguments).

For the case of PKS 1510-089, such site, i.e. the innermost VLBI jet feature (radio core), is located at ~20pc from the central engine.

Without mm-VLBI it is not possible to make the absolute location the emission regions.
Optical EVPA swings & γ-ray emission

- Optical polarization angle swing coincident in time with:
 - Gamma-ray flare
 - Optical-NIR flare
 - Drop of optical polarization deg.

Alternative interpretation: Pure geometrical effect by a knot propagating through a bent jet
Stable optical-mm EVPAs & γ-ray emission

- No polarization swing during MWL flare
- Different phenomenology
Stable optical-mm EVPAs & γ-ray emission

All events located at (or beyond) the mm-VLBI core, and hence the γ-ray emission should have been produced at more than 12 pc from the central black hole (where the core is estimated to be located).

- No polarization swing during MWL flare
- Different phenomenology

Agudo et al. (2011b)
Proposed model for multi-spectral range emission behavior

- Scenario where radio, mm, optical flares produced at the 7mm core (conical shock) by particle acceleration in a moving blob (Qs) when it crosses a standing shock. Qs also contributes to flare.

- Shortly after, γ-ray flares are produced by inverse Compton scattering of these optical-IR photons (SSC).

Stable optical-mm EVPAs & γ-ray emission: another case

- Two kinds of events related at high conf. to the reported γ-ray outbursts (A_γ and B_γ):.

1. Rising phase of two most luminous 1mm flares in OJ287 (A_{mm} and B_{mm})

2. Two sharp and high peaks of linear polarization (∼14% and ∼22%) in bright jet feature C1 > 14 pc from the central engine.

- No polarization swing during MWL flare
A different case: The BL Lac object S5 0716+714

- Although there is fast and extreme variability along the spectrum
- There is no clear relation of events at different spectral ranges
- No formal correlation is found in general
- Only one clear superluminal ejection is found

S5 0716+714

Agudo et al. (in prep.)
• Millimeter VLBI allows us to actually resolve the jet evolution, and sometimes allows to make the absolute location of emission regions along the spectrum up to γ-rays.

• Millimeter and optical polarimetry is a powerful tool to make identification of events along the spectrum, and provides direct information about magnetic field in the emission regions.

• Blazars studies involving polarimetry locate γ-ray emission far outwards BLR.
Summary

• Millimeter VLBI allows us to actually resolve the jet evolution, and sometimes allows to make the absolute location of emission regions along the spectrum up to γ-rays.

• Millimeter and optical polarimetry is a powerful tool to make identification of events along the spectrum, and provides direct information about magnetic field in the emission regions.

• Blazars studies involving polarimetry locate γ-ray emission far outwards BLR.

• Not all blazars seem to behave in the same way.

• Actually, every blazar seem to behave in a somehow different way!
Summary

Millimeter VLBI allows us to actually resolve the jet evolution, and sometimes allows to make the absolute location of emission regions along the spectrum up to γ-rays.

- Millimeter and optical polarimetry is a powerful tool to make identification of events along the spectrum, and provides direct information about magnetic field in the emission regions.

- Blazars studies involving polarimetry locate γ-ray emission far outwards BLR.

- Not all blazars seem to behave in the same way.

- Actually, every blazar seem to behave in a somehow different way!

- Are we starting to understand the MWL behavior of blazars?
Summary

- Millimeter VLBI allows us to actually resolve the jet evolution, and sometimes allows to make the absolute location of emission regions along the spectrum up to γ-rays.

- Millimeter and optical polarimetry is a powerful tool to make identification of events along the spectrum, and provides direct information about magnetic field in the emission regions.

- Blazars studies involving polarimetry locate γ-ray emission far outwards BLR.

- Not all blazars seem to behave in the same way.

- Actually, every blazar seem to behave in a somehow different way!

- Are we starting to understand the MWL behavior of blazars? NO
Summary

- Millimeter VLBI allows us to actually resolve the jet evolution, and sometimes allows to make the absolute location of emission regions along the spectrum up to γ-rays.

- Millimeter and optical polarimetry is a powerful tool to make identification of events along the spectrum, and provides direct information about magnetic field in the emission regions.

- Blazars studies involving polarimetry locate γ-ray emission far outwards BLR.

- Not all blazars seem to behave in the same way.

- Actually, every blazar seem to behave in a somehow different way!

- Are we starting to understand the MWL behavior of blazars? NO.

- Will we understand them one day?
Summary

• Millimeter VLBI allows us to actually resolve the jet evolution, and sometimes allows to make the absolute location of emission regions along the spectrum up to γ-rays.

• Millimeter and optical polarimetry is a powerful tool to make identification of events along the spectrum, and provides direct information about magnetic field in the emission regions.

• Blazars studies involving polarimetry locate γ-ray emission far outwards BLR.

• Not all blazars seem to behave in the same way.

• Actually, every blazar seem to behave in a somehow different way!

• Are we starting to understand the MWL behavior of blazars? **NO**

• Will we understand them one day? **HOPEFULLY!**
• Millimeter VLBI allows us to actually resolve the jet evolution, and sometimes allows to make the absolute location of emission regions along the spectrum up to γ-rays.

• Millimeter and optical polarimetry is a powerful tool to make identification of events along the spectrum, and provides direct information about magnetic field in the emission regions.

• Blazars studies involving polarimetry locate γ-ray emission far outwards BLR.

• Not all blazars seem to behave in the same way.

• Actually, every blazar seem to behave in a somehow different way!

• Are we starting to understand the MWL behavior of blazars? NO

• Will we understand them one day? HOPEFULLY!

• For that we will need to study as much sources as possible in as much detail as possible, to try to dentify any common phenomenology that can allow to start drawing general conclussions. (More sources, more flares!)
Models for polarization swings

- Helical trajectory of jet feature driven by a helical magnetic field
 - Marscher et al. (2008; 2010)

- Helical magnetic fields in a bent jet
 - Abdo et al. (2010)

- Internal shock model in helical field distorted by light travel time effects
 - Zhang et al. (2014)

- Turbulent Extreme Multi-Zone Model (TEMZ)
 - Marscher (2014)
Summary

- Millimeter VLBI allows us to actually resolve the jet evolution, and sometimes allows to make the absolute location of emission regions along the spectrum up to γ-rays.

- Millimeter and optical polarimetry is a powerful tool to make identification of events along the spectrum, and provides direct information about magnetic field in the emission regions.

- Blazars studies involving polarimetry locate γ-ray emission far outwards BLR.

- Not all blazars seem to behave in the same way.

- Actually, every blazar seem to behave in a somehow different way!

- Are we starting to understand the MWL behavior of blazars? **NO**

- Will we understand them one day? **HOPEFULLY!**

- For that we will need to study as much sources as possible in as much detail as possible, to try to dentify any common phenomenology that can allow to start drawing general conclusions. (More sources, more flares!)