Recent developments on TGF production models

Sebastien Celestin

LPC2E, University of Orleans, CNRS, France.

13th AGILE Science Workshop
25–26 May 2015, Rome, Italy
Introduction

- Typical max. energy: ~ 30 MeV.
- Max. energy reported (AGILE): 100 MeV! [Tavani et al., PRL, 106, 018501, 2011].
- Typical duration: fraction of ms.
- t_{50}-duration distribution peak reported between $\sim 100 \mu s$ (Fermi) [Fishman et al., JGR, 116, A07304, 2011] and $\sim 200 \mu s$ (AGILE) [Marisaldi et al., 2014].
- Typical fluence: $\gtrsim 1$ photon/cm2 when observed from low-orbit.
- The maximum TGF fluence is yet to be established (due to deadtime, pile-up, etc.).
Introduction

Illustration of a TGF. Credit: NASA/Goddard Space Flight Center

- Typical max. energy: ~ 30 MeV.
- Max. energy reported (AGILE): 100 MeV! [Tavani et al., PRL, 106, 018501, 2011].
- Typical duration: fraction of ms.
- t_{50}-duration distribution peak reported between $\sim 100 \ \mu s$ (Fermi) [Fishman et al., JGR, 116, A07304, 2011] and $\sim 200 \ \mu s$ (AGILE) [Marisaldi et al., 2014].
- Typical fluence: $\gtrsim 1$ photon/cm2 when observed from low-orbit.
- The maximum TGF fluence is yet to be established (due to deadtime, pile-up, etc.).

Example of a multi-peak TGF detected by AGILE [Marisaldi et al., JGR, 119, 1337, 2014]

What is the origin of these energetic radiation bursts?
Introduction

- TGF spectrum is consistent with bremsstrahlung emission (or “braking radiation”) from energetic electrons.

Bremsstrahlung emission process.

- Production of energetic electrons in the atmosphere?
Recent developments on TGF production models

Sebastien Celestin

Introduction

Relativistic Runaway Electron Avalanches
Stepped leader and energetic radiation
High-energy photon transport
High-energy AGILE anomalous spectrum
Optical emissions associated with TGFs
Outlook

Two theories to explain TGFs

- **RREA in thunderstorm weak electric field** [e.g., *Dwyer*, JGR, 113, D10103, 2008]
- **Thermal runaway electrons in the leader field** [e.g., *Celestin and Pasko*, JGR, 116, A03315, 2011]
Relativistic Runaway Electron Avalanches
seeded by energetic electrons produced by cosmic rays alone

Introduction

Relativistic Runaway Electron Avalanches
Stepped leader and energetic radiation
High-energy photon transport
High-energy AGILE anomalous spectrum
Optical emissions associated with TGFs
Outlook

[\textit{Dwyer et al.}, JGR, D09206, 2010, Figure 1].

- \textit{Dwyer et al.} [JGR, 113, D10103, 2008] demonstrated that TGFs cannot be produced by relativistic runaway electron avalanches acting on natural background radiation or extensive cosmic-ray air showers alone.
Recent developments on TGF production models

Sebastien Celestin

Introduction
Relativistic Runaway Electron Avalanches
Stepped leader and energetic radiation
High-energy photon transport
High-energy AGILE anomalous spectrum
Optical emissions associated with TGFs
Outlook

Relativistic Runaway Electron Avalanches
seeded by energetic electrons produced by cosmic rays + relativistic feedback

[Dwyer, Phys. Plasmas, 14, 042901, 2007, Figure 2].

- Relativistic feedback: gamma-rays can create new runaway electrons by Compton scattering, electron-positron pair production, 2nd order feedback from positron’s bremsstrahlung or annihilation.

- Self-propagating relativistic feedback streamer has been suggested to occur for large potential differences [Dwyer, JGR, 117, A02308, 2012; Liu and Dwyer, JGR, 118, 2359, 2013].

- Feedback requires electric fields >4 kV/cm ($\times N/N_0$) extending over several kilometers [e.g., Skeltved et al., JGR, 119, 9174, 2014], while measurements show ambient electric fields <2 kV/cm ($\times N/N_0$) in thunderclouds [e.g., Marshall et al., JGR, 100, 7097, 1995].
Assuming a TGF source at 15 km, the RREA spectra at satellite altitude matches RHESSI averaged TGF spectrum \cite{Dwyer and Smith, GRL, 32, L22804, 2005}.

\begin{align}
\text{RREA theory} & \sim \exp(-\frac{\mathcal{E}}{7 \text{ MeV}})/\mathcal{E} \\
\end{align}
Recent developments on TGF production models

Sebastien Celestin

Introduction
Relativistic Runaway Electron Avalanches
Stepped leader and energetic radiation
High-energy photon transport
High-energy AGILE anomalous spectrum
Optical emissions associated with TGFs
Outlook

High-energy AGILE anomalous spectrum

Recent developments on TGF production models

Sebastien Celestin

Introduction
Relativistic Runaway Electron Avalanches
Stepped leader and energetic radiation
High-energy photon transport
High-energy AGILE anomalous spectrum
Optical emissions associated with TGFs
Outlook

Stepped leader propagation

Illustration of the production of thermal runaway electrons and their acceleration in the lightning leader field during the negative corona flash process.
Recent developments on TGF production models

Sebastien Celestin

Introduction
Relativistic Runaway Electron Avalanches
Stepped leader and energetic radiation
High-energy photon transport
High-energy AGILE anomalous spectrum
Optical emissions associated with TGFs
Outlook

Electric field produced during the negative corona flash of a stepping leader

Lightning leader
l=1 km, r=1 cm
E_0=0.1 kV/cm
U_l ~ 5 MV

Injection of 65 keV electrons

We use the method of moments [Balanis, 1989] to calculate the charge distribution in the leader channel in a given large-scale electric field E_0.
Electron acceleration in the electric field produced during the negative corona flash of a stepping leader

We use the method of moments [Balanis, 1989] to calculate the charge distribution in the leader channel in a given large-scale electric field \(E_0 \).

Lightning leader
- \(l = 1 \text{ km}, r = 1 \text{ cm} \)
- \(E_0 = 0.1 \text{ kV/cm} \)
- \(U_l \sim 5 \text{ MV} \)
Potential drop in front of the leader tip: $U_l = E_{\text{amb}}L/2$, where $E_{\text{amb}} \approx 0.1\ \text{kV/cm}, 0.1\ \text{kV/cm}, 0.6\ \text{kV/cm}, 0.8\ \text{kV/cm}, \text{ and } 1\ \text{kV/cm}$, and $L \approx 1\ \text{km}, 2\ \text{km}, 2\ \text{km}, 4\ \text{km}, \text{ and } 6\ \text{km}$ are taken to construct potential drops of $5\ \text{MV}, 10\ \text{MV}, 60\ \text{MV}, 160\ \text{MV}, \text{ and } 300\ \text{MV}$, respectively.

The bremsstrahlung emission is simulated using the analytical bremsstrahlung differential cross section $\frac{d\sigma_{\gamma}}{d\varepsilon_{\gamma}}(\varepsilon, \varepsilon_{\gamma})$ from [Heitler, 1954, p. 249].
Monte Carlo model to simulate photon transport
Source altitude determination and comparison to RHESSI measurements

RHESSI data are reproduced from [Dwyer and Smith, GRL, 32, L22804, 2005]. The detector response matrix was taken from http://scipp.ucsc.edu/~dsmith/tgflib_public/data/ [Xu et al., GRL, 39, L08801, 2012]
Recent developments on TGF production models

Sebastien Celestin

Introduction
Relativistic Runaway Electron Avalanches
Stepped leader and energetic radiation
High-energy photon transport
High-energy AGILE anomalous spectrum
Optical emissions associated with TGFs
Outlook

Fluence at satellite altitude

- The number of photons reaching satellite altitude (∼500 km) depends mainly on the number of photons at the source, the source altitude, and the source photon spectrum.

- Using the Monte Carlo model of photon transport through the atmosphere, one obtains the predicted TGF fluence at an altitude of 500 km and a radial distance of 200 km from the source:

<table>
<thead>
<tr>
<th>Potential drop</th>
<th>Fluence</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 MV</td>
<td>9×10^{-11} ph/cm²</td>
</tr>
<tr>
<td>10 MV</td>
<td>5×10^{-9} ph/cm²</td>
</tr>
<tr>
<td>60 MV</td>
<td>1.5×10^{-4} ph/cm²</td>
</tr>
<tr>
<td>160 MV</td>
<td>0.01 ph/cm²</td>
</tr>
<tr>
<td>300 MV</td>
<td>0.6 ph/cm²</td>
</tr>
</tbody>
</table>

Number of photons with energy >10 keV at the source calculated from a reference of 10^{11} in a 5 MV leader case [Schaal et al., JGR, 117, D15201, 2012; Xu et al., GRL, 41, 7406, 2014].

⇒ TGFs detected by satellites represent only a small fraction of a much larger distribution [see Østgaard et al., JGR, 117, A03327, 2012].
Non-equilibrium features

Panel (a): Homogeneous electric field 12.5 kV/cm. Panel (b): Inhomogeneous electric field produced by a 350 MV stepping lightning leader.
Non steady state lightning-produced TGF spectrum

Optical emissions associated with TGFs

Illustration of optical emissions produced by two TGF production mechanisms [Xu et al., JGR, 120, 1355, 2015, Figure 1].
Optical emissions associated with TGFs

Table 2. Intensity of Optical Emissions from $2PN_2$ (Column 3) and $1NN_2^+$ (Column 4) in Rayleighs and Intensity Ratio Between $2PN_2$ and $1NN_2^+$ (Column 5) in the Visible Range With Wavelengths Between 390 nm and 700 nm for Different Acceleration Processes (Column 1) With Different Characteristic Sizes (Column 2) Calculated at Ground Level

<table>
<thead>
<tr>
<th>Process</th>
<th>Radius (m)</th>
<th>$2PN_2$ (R)</th>
<th>$1NN_2^+$ (R)</th>
<th>$\frac{2PN_2}{1NN_2^+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>RREA (4.3 kV/cm)</td>
<td>1000</td>
<td>8.99×10^8</td>
<td>1.22×10^9</td>
<td>0.74</td>
</tr>
<tr>
<td>RREA (12.5 kV/cm)</td>
<td>1000</td>
<td>1.70×10^9</td>
<td>1.55×10^9</td>
<td>1.10</td>
</tr>
<tr>
<td>RREA (18.8 kV/cm)</td>
<td>1000</td>
<td>6.63×10^9</td>
<td>1.31×10^9</td>
<td>5.06</td>
</tr>
<tr>
<td>Thermal runaway electrons</td>
<td>50</td>
<td>8.28×10^{11}</td>
<td>5.23×10^{11}</td>
<td>1.58</td>
</tr>
<tr>
<td>Streamer zone</td>
<td>40</td>
<td>6.83×10^{10}</td>
<td>6.75×10^8</td>
<td>101.19</td>
</tr>
</tbody>
</table>

[Xu et al., JGR, 120, 1355, 2015, Table 2].
Recent developments on TGF production models

Sebastien Celestin

Introduction

Relativistic Runaway Electron Avalanches

Stepped leader and energetic radiation

High-energy photon transport

High-energy AGILE anomalous spectrum

Optical emissions associated with TGFs

Outlook

Two main models can explain TGFs (large-scale RREAs and +IC lightning).

Theoretical predictions on spectra, fluences, optical emissions, radio emissions, time dynamics (lightcurves), and accompanied electrical in-cloud activity, must be used to discriminate between those models.

Need for faster instruments to reduce deadtime and pile-up.

ASIM (ESA) and TARANIS (CNES).

Need for observations at higher energies (up to 100 MeV) to confirm or invalidate AGILE high-energy anomalous spectrum.
Thank you for your attention.

This work is supported by the French space agency (CNES) as part of the TARANIS space mission.