

Francesco Verrecchia, on behalf of the AGILE Team

14th AGILE Science Workshop, ASI HQ, June 20-21, 2016

Outline

AGILE can play a crucial role in the search of GW source counterparts

- AGILE two operative lives
- AGILE and GW150914 (and GW151226, LVT151012)
- Prospects for a first detection of prompt gamma-ray emission GW sources

AGILE has the shortest reaction time to bright gamma-ray transients

- Blazars (fast ATels)
- Galactic transients (recently Cyg X-3 again...)

AGILE is excellent for GW source searches

- very large field of view (2.5 sr)
- 200 passes/day over more than 80% of the sky
- high probability of prompt event coverage

Recent publication of GW150914 observation analysis (Tavani et al. 2016) accepted on ApJ

AGILE two "lives": pointing and spinning

AGILE	POINTING	SPINNING
time period	Jul.07 – Oct.09	Nov. 2009 - today
attitude	fixed	variable (rotation ~ 0.8%sec)
sky coverage	1/5	~ 70-80 %
1-day exposure (≤ 30 deg off-axis, @ 100 MeV)	~ 2 x 10 ⁷ (cm ² sec)	(0.5 - 1) x 10 ⁷ (cm ² sec)

AGILE two "lives": pointing

25d + 6d exposure

Spinning example: AGILE data acquisition restart, 26 Mar 2014

AGILE in spinning: revolution including T0 of GW150914

Earth occultation during one orbit (95 min)

Search for gamma-ray transients

- gamma-ray imager: covers 80% of the sky
- 200 spinning rotations / day
- (Earth occultations, SAA) > 120 useful passes
- passes of ~ 150 sec duration
- sensitivity ~ (1-2) 10⁻⁸ erg cm⁻² s⁻¹ in 100 sec.
- GRB like searches, MCAL, AC

GW150914

 $T_0 = 9:50:45 \text{ UT}, 14 \text{ September}, 2015$

- learned about the event on Feb. 11, 2016 (no MoU active yet)
- archival search

exposure: revolution -120/+300 sec from T₀

exposure: revolution -120/+300 sec from T₀

AGILE field at $T_0 = 09:50:45$ UT

just missed it (-2 / +2 sec)

Central LIGO contour exposure scan: from T_0 -300s to T0 +500s

Mean exposure within 7° x 25° region (black) and 10° radius circular region (red) at about the LIGO contour center

100s exposure scan

65% of LIGO contour covered ~10-60s before T0

AGILE observation of GW150914

- probability of covering with the imaging GRID-FoV the region (error box) of the prompt GW event: ~ 10% (½ x 1/5)
- much larger than any other imaging large-FoV (2-2.5 sr) instruments in space (Swift-BAT, Fermi-LAT)
- even larger than < 1-sr FoV instruments of INTEGRAL and NuStar

AGILE exposure at T_0+330 sec (+/-50 sec)

2-sigma upper limit (E > 50 MeV) = $1.5 \times 10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1}$

AGILE and Fermi-LAT upper limits in the GRB090510 light curve

(repositioned at z = 0.1, adapted from Fermi-LAT Collab., 2016)

AGILE-MCAL GRB090510 light curve

GRB090510 light curve as detected by MCAL (4ms bin), Giuliani + 2010

->15ms soft precursor at T=T0 - 0.55s (E < 0.7MeV)

AGILE does not detect the Fermi-GBM transient

- at the GW150914 prompt time (T₀ + 0.4s), best GBM position region at about 90° off-axis for AGILE GRID and MCAL
- limited exposure of MCAL
- AGILE 5-sigma MCAL upper limit $F_{GBM} = 2 \times 10^{-6} \text{ erg cm}^{-2} (0.45 100 \text{ MeV}),$
- 2.3 times larger than GBM event extrapolation at 1 MeV

```
F_{GBM} = (2 \pm 1) \times 10^{-7} \text{ erg cm}^{-2} (10 \text{ keV} - 1 \text{ MeV}), photon index 1.4 (Connaughton+ 2016)
```


precursor search

Table 1: Analysis of individual passes over the GW150914 error box

Interval	Central	Duration	2σ UL (*)	Comments
number	time bin (**)	(sec)	$(10^{-8} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	
-13	-5203	100	2.7	88% of error box not-occulted by the Earth
-12	-4779	100	_	affected by SAA
-11	-4355	100	_	affected by SAA
-10	-3931	100	_	affected by SAA
-9	-3507	100	_	affected by SAA
-8	-3083	100	2.3	93% of error box not-occulted by the Earth
-7	-2663	100	4.5	78% of error box not-occulted by the Earth
-6	-2235	100	1.5	68% of error box not-occulted by the Earth
-5	-1807	100	1.5	65% of error box not-occulted by the Earth
-4	-1379	100	1.5	20% of error box not-occulted by the Earth
-3	-951	100	1.0	48% of error box not-occulted by the Earth
-2	-523	100	1.0	56% of error box not-occulted by the Earth
-1	-95	100	1.5	65% of error box not-occulted by the Earth
+1	+333	100	1.9	75% of error box not-occulted by the Earth

precursor search (passes -13/+1, 95 minutes)

Long time-scale search

Table 2: Long-integration time analysis of the GW150914 localization region

Interval	Duration	2σ UL (*)	Comments
name		$(10^{-9}\mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1})$	
-3d	3 days	0.3	
-2d	2 days	0.5	
-1d	1 day	0.7	
-12h	12 hours	0.8	
-6h	6 hours	2.5	
-3h	3 hours	3.5	
+3h	3 hours	_	telemetry interruption (**)
+6h	6 hours	3.5	with telemetry interruption (**)
+12h	12 hours	1.8	with telemetry interruption (**)
+1d	1 day	1.1	with telemetry interruption (**)
+2d	2 days	0.9	with telemetry interruption (**)
+3d	3 days	0.7	with telemetry interruption (**)
+5d	$5 \mathrm{days}$	0.4	with telemetry interruption (**)

Long-time scale search:

- hours
- days
- =>no significant detection

Bulgarelli talk

AGILE-MCAL and Fermi-GBM exposure at the GW150914 prompt time

Other two GW events: G211117, LVT151012, PRELIMINARY results

G211117

• $T_0 = 3:38:54$ UT, 26 December, 2015

- learned about the event on May 23, 2016 (after MoU activation)
- on-going archival search & analysis

LVT151012

T₀ = 9:54:43 UT, 12 October, 2015; candidate

- learned about the event recently
- started archival search

bright perspectives for AGILE

- LIGO-VIRGO MoU with AGILE signed and now fully operative.
- AGILE observations of GW events are part of a strategy of collaboration between space and ground observatories (in Italy: INAF, INFN, ASI).
- The large AGILE-GRID FoV (120° diameter) and the 200 passes/day are crucial assets.

bright perspectives for AGILE

- large probability of covering with the imaging GRID-FoV the region (error box) of a prompt GW event: ~ 10% (½ x 1/5)
- further optimization of the MCAL trigger (0.4-100 MeV)

very fast data processing, 2-3hr, to be improved....

perspectives for AGILE after the summer

ASI announced further support to AGILE mission

- 14 downlinks/day
- Super-AGILE (20-60 keV) turned on again
- very fast data processing, dedicated team for GW fast reaction.

Thank you