Hard Fermi-LAT Sources

Sara Cutini,

Marco Ajello, Alberto Domínguez, Jamie Cohen and Dario Gasparrini

on behalf of the Fermi-LAT Collaboration

*n*FGL Catalogs detect and characterize sources in the ~0.1-100 GeV energy range *n*FHL Catalogs explore the higher-energy sky

Analysis details

- 50 GeV 2 TeV
- 80 months of data (till April 2015)
- Pass 8 (source)
- Unbinned likelihood

Detections

- 360 sources:
 - 75% blazars, 11% Galactic sources, 14% unassociated
- 78 detected by IACTs (TeVCat)
- 230 detected in 1FHL
- 303 detected in 3FGL
- 57 brand new sources (not 1FHL/3FGL)

Bottom line: plenty of sources for TeV telescopes

The 2FHL sky: count map

80 months of P8 data (50 GeV - 2 TeV)

61,000 photons E > 50 GeV 22,100 photons E > 100 GeV 2,000 photons E > 500 GeV

~1.5 photon every deg²

Adaptively Smoothed

- Blazar-like objects constitute >80% of the 2FHL Catalog
 - Detected up to z~2
 - Most of them are BL Lacs, only 10 FSRQs
 - Different population than 3FGL

- 103 sources at |b|<10°
 - 42 blazars, 39 Galactic objects, 13 unassociated and 9 Dark Acc.
 - PWNe/SNRs represent 87% of the Galactic population
 - Galactic sources are very hard
 - Median photon index of ~2, while for blazars is ~3
 - Half of the unassociated sources are hard and thus (likely) Galactic

Example of a dark accelerator

🔊 ermi

- All new sources are significantly detected in 2FHL (TS>75)
 - They are hard, and harder than the Galactic diffuse emission
 - They are associated to known (3) PWNe and (2) SNRs
 - Detailed characterization will be reported in future papers

2FHL Name	l [m deg]	b [deg]	\mathbf{TS}	TS_{ext}	TS_{2pts}	F_{50}	ΔF_{50}	Г	$\Delta\Gamma$	Association	\mathbf{Class}	Radius [deg]
J0431.2+5553e J1112.4-6059e J1355.2-6430e	150.384 291.222 309.730	5.216 -0.388 -2.484	87.9 80.9 82.3	83.4 68.3 31.8	26.2 22.5 12.9	11.70 12.80 9.59	2.11 2.36 1.95	$1.66 \\ 2.15 \\ 1.56 \\ 1.97$	0.20 0.28 0.22	G 150.3+4.5 PSR J1112-6103 PSR J1357-6429	snr pwn pwn	$1.27 \\ 0.53 \\ 0.57 \\ 0.26$
J1419.2–6048e J1443.2–6221e	$313.432 \\ 315.505$	-2.239	$\begin{array}{c} 109.3 \\ 75.6 \end{array}$	$\frac{49.1}{29.9}$	15.6 19.2	17.60 7.23	$\begin{array}{c} 2.80\\ 1.70\end{array}$	$1.87 \\ 2.07$	$\begin{array}{c} 0.19 \\ 0.30 \end{array}$	SNR G315.4-2.3	pwnsnr	$\begin{array}{c} 0.36\\ 0.27\end{array}$

- All new sources are significantly detected in 2FHL (TS>75)
 - They are hard, and harder than the Galactic diffuse emission
 - They are associated to known (3) PWNe and (2) SNRs
 - Detailed characterization will be reported in future papers

2FHL Name	l [m deg]	$b [\mathrm{deg}]$	\mathbf{TS}	TS_{ext}	TS_{2pts}	F_{50}	ΔF_{50}	Г	$\Delta\Gamma$	Association	Class	Radius [deg]
J0431.2+5553e J1112.4-6059e J1355.2-6430e J1419.2-6048e	$\begin{array}{c} 150.384\\ 291.222\\ 309.730\\ 313.432 \end{array}$	5.216 -0.388 -2.484 0.260	87.9 80.9 82.3 109.3	$83.4 \\ 68.3 \\ 31.8 \\ 49.1$	$26.2 \\ 22.5 \\ 12.9 \\ 15.6$	$11.70 \\ 12.80 \\ 9.59 \\ 17.60$	2.11 2.36 1.95 2.80	$1.66 \\ 2.15 \\ 1.56 \\ 1.87$	$0.20 \\ 0.28 \\ 0.22 \\ 0.19$	G 150.3+4.5 PSR J1112-6103 PSR J1357-6429 PSR J1420-6048	snr pwn pwn pwn	$1.27 \\ 0.53 \\ 0.57 \\ 0.36$
J1443.2 - 6221e	315.505	-2.239	75.6	29.9	19.2	7.23	1.70	2.07	0.30	SNR G315.4–2.3	snr	0.27

Fermi-LAT >50 GeV Count Map (adaptively smoothed)

)	0.0099	0.03	0.069	0.15	0.31	0.62	1.2	2.5	5	10

More than 1,700 sources at E>10 GeV in 84 months of Fermi-LAT data

)	0.0099	0.03	0.069	0.15	0.31	0.62	1.2	2.5	5	10

- *Fermi*-LAT has produced a new, sensitive, census of the >50 GeV sky
 - It detected 360 sources, a lot of them new → only 25% in the TeVCat
 - It detected new extended sources
 - >80% of the sources are blazars (BL Lacs) detected up to $z\sim2$
 - It yielded interesting results for the:
 - EGB LAT collaboration
 - Almost accounted by blazars
 - *EBL Dominguez* & *Ajello*, *ApJL*, 2015, 813, 34
 - Clear signs of EBL attuenation (nothing else)
 - *Neutrino background: Bechtol et al.* arXiv:1511.00688

Backup slides

- H.E.S.S. reported the detection of 69 sources reaching a sensitivity of ~2% of the >1 TeV Crab Nebula flux
- The LAT detects (in 2FHL) 36 sources in the same region reaching an average sensitivity of 3-4% of the Crab Nebula flux
- The LAT detects an equal number of PWNe/SNRs while for H.E.S.S they are in a 1.5:1 ratio
- Within the H.E.S.S. footprint there are:
 - 7 unassociated sources
 - 6 objects coincident with dark accelerators

- Being sensitive over ~4 decades in energy, the LAT resolves the high-energy peak
 - Sources become softer at higher energies
 - Sources becomes softer at high redshift

- Being sensitive over ~4 decades in energy, the LAT resolves the high-energy peak
 - Sources become softer at higher energies
 - Sources becomes softer at high redshift

- Spectral breaks between the VHE and Fermi band have been used as diagnostic for/against the EBL (Essey&Kusenko, Sanchez+13,etc)
 - spectral flattening at high redshift has been interpreted as sign of interesting physics

- 2FHL opens a new window on the high-energy sky
 - 360 sources detected between 50 GeV and 2 TeV
 - 75% blazars, 14% Galactic and 11 % unassociated
 - only 25% detected in TeVCat

– Galactic science:

- all display hard spectra, 87 % are PWNe/SNRs
- 5 new extended sources and ~25 unassociated sources
- good match to the H.E.S.S. Galactic plane survey

– Extragalactic science:

- >80% of 2FHL sources are blazars (BL Lacs), detected up to z~2
- Clear signs of EBL attenuation (and nothing else)

- Evidence for strong softening of the 2FHL spectra with redshift
 Most likely due to EBL
- Several photons detected beyond the horizon
 - Very important to constrain the EBL

Dermi Gamma-ray Space Telescope

0.1

0

54700

55300

55900

MJD

56500

Variability

- Difficult to study variability with few photons
- Yet, 7 sources (all blazars) are found to be variable

Example of a Dark Accelerator: 2

- Galactic sources have much harder spectra than extragalactic ones
 - Median spectral index $\Gamma=2$ vs $\Gamma=3$
 - The EBL might be the culprit
 - Spectral index can be used to distinguish Galactic objects among the unassociated sources

- We used the extended templates of previously detected sources:
 - 25 from 3FGL + W41
 - Of them 6 sources were not significantly detected:
 - SMC, S 147, Cen-A (lobes), W 44, HB 21, Cygnus loop
- Blind search for new sources:
 - 72 ROIs of 10°, devoid of sources, centered at b=0
 - Iteratively add disk source at most significant TS peak
 - Fit and choose extended source if TS_{ext} >16
- It resulted in the detection of 5 new extended sources

Dermi

• Models predict that the >50 GeV EGB is produced by blazars

EGB: Ackermann et al. 2015, Models: Ajello+2015, Di Mauro+2015 **10**⁻⁶ -----[GeV cm⁻² s⁻¹ sr⁻¹] ALAC. 10⁻⁷ EGB Spectrum (Ackermann et al. 2014b) E²dN/dE EGB Foreground modeling uncertainty All Blazars - this work 10⁻⁸ All Blazars (no EBL) - this work 10² **10**⁻¹ 10^{3} 10 Energy[GeV] Ajello+15

- Perform simulations of the > 50 GeV sky to determine the detection efficiency
 - i.e. the probability to detect a source in 2FHL as a function of flux

- Perform simulations of the > 50 GeV sky to determine the detection efficiency
 - i.e. the probability to detect a source in 2FHL as a function of flux

 Fluctuations of the background depend also on the properties of the unresolved source population

 The 2FHL LogN-LogS resolves 96(+15/-18)% of the IGRB

Nearly all the IGRB is produced by BL Lacs

~1.5 photon every deg²

80 months of P8 data (50 GeV - 2 TeV)

61,000 photons E > 50 GeV 22,100 photons E > 100 GeV 2,000 photons E > 500 GeV

Preliminary

- Measuring the intrinsic spectral index: fitting an EBL-absorbed power law model to 129 2FHL blazars with a redshift
 - the intrinsic spectra are much harder than the observed ones

