

CTA Key Science Projects

Stefano Vercellone (INAF/IASFPA) for the CTA Consortium

CTA Main Scientific Themes

Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Probing Extreme Environments

- Processes close to neutron stars and black holes
- Processes in relativistic jets, winds and explosions
- Exploring cosmic voids

Physics frontiers – beyond the Standard Model

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high-energy photons?
- Do axion-like particles exist?

CTA Key Science Projects

The criteria used for selection of the baseline KSPs

- 1. Excellent scientific case and clear advance beyond the state of the art;
- 2. The production of legacy data-sets of high value to a wider community;
- 3. Clear added value of doing this as a KSP rather than as part of the Guest Observer Programme:
 - 1. the scale of the project in terms of observing hours very large projects will be difficult to accommodate in the open time early in the lifetime of the observatory;
 - 2. the need of a coherent approach across multiple targets or pointings;
 - 3. the technical difficulty of performing the required analysis and hence reliance on consortium expertise.

CTA Key Science Projects

Key Science Programs

Theme		Question		Galactic Centre Survey	Galactic Plane Survey	LMC Survey	Extra- galactic Survey	Transients	Cosmic Ray PeVatrons	Star-forming Systems	Active Galactic Nuclei	Galaxy Clusters
Understanding the Origin and Role of Relativistic Cosmic Particles	1.1	What are the sites of high-energy particle acceleration in the		~	~~	~~	~~	~~	~	v	v	~~
	1.2	What are the mechanisms for cosmic particle acceleration?		~	v	~		~~	~~	~	~~	v
	1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		~		v				~~	~	•
Probing Extreme Environments	2.1	What physical processes are at work close to neutron stars and black holes?		~	~	v			~~		~~	
	2.2	What are the characteristics of relativistic jets, winds and explosions?		v	~	v	~	~~	~~		~~	
	2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?					~	~			~~	
Exploring Frontiers in Physics	3.1	What is the nature of Dark Matter? How is it distributed?	~~	~~		~						~
	3.2	Are there quantum gravitational effects on photon propagation?						~~	~		~~	
	3.3	Do Axion-like particles exist?					~	~			~~	

Surveys

Targets

CTA Science: KSPs and Guest Observers

Credits: J. Cortina and The CTA Consortium

CTA Science: KSPs and Guest Observers

Key Science Programmes

- Ensure that important science questions for CTA are addressed in a coherent fashion and with a well-defined strategy,
- Conceived to provide legacy data sets for the entire community

Example: galactic and extragalactic

surveys

- Deep investigation of known sources
- Follow-up of KSP discovered sources
- Multiwavelength campaigns
- Follow-up of ToOs from other wavebands / messengers
- Search for new sources

Proposal-Driven User Programme

Time for two topics

Extra-galactic Survey

Galactic Plane Survey + Galactic Center Survey

Caveat

a limited review, if interested please ask for more details

somewhat biased towards the SSTs contribution

Extra-galactic Survey

The aim is to perform a blind survey of 25% of the sky, and to construct an unbiased VHE extragalactic source catalogue with an integral sensitivity limit of ~5 mCrab.

SSTs will have a relevant role thanks to their > 9° field of view, in synergy with the deep MSTs sensitivity for E > 100 GeV.

We expect the **discovery of extreme BL Lac objects** peaking in the 0.1 – 1 TeV region, thanks to the good spectral coverage provided by MSTs and SSTs in the 0.1 – 10 TeV energy range.

Extra-galactic Survey

The survey would connect with the Galactic Plane Survey (|b| < 5°) over Galactic longitude -90° < l < 90°.

Several highly interesting regions such as the Virgo cluster, Coma cluster, and Fermi Bubbles (North) and Cen A (South) will be covered by the proposed survey.

Current simulations suggest that a wide-field, shallow survey should detect more sources than a narrow-field, deep survey (given an equal survey time).

Extra-galactic Survey

Padovani & Giommi (2015) derived the expected number of blazars on the sky in the GeV–TeV domain.

With the 5 mCrab sensitivity during the proposed survey, **CTA should detect around 100 sources in 10,000 deg**².

Galactic Plane Survey

J. Knödlseder and CTA Consortium

Galactic Plane Survey

Expected results

- Discovery of new and unexpected phenomena in the Galaxy
- Discovery of PeVatron candidates → origin of cosmic rays
- Detection of many new VHE sources O(300 500), particularly PWNe and SNRs
- Measurement of the large-scale diffuse VHE gamma-ray emission
- Discovery of new VHE gamma-ray binaries
- Production of a multi-purpose legacy data set
- The GPS will produce and periodically release sky maps and catalogues

Galactic Center Survey

Fermi bubbles Gal. Center deep exposure

Expected results

The CTA Consortium

- Determination of the nature of the central source
- A detailed view of the VHE diffuse emission
- Resolving new, previously undetectable sources
- Search for variability in the VHE source near Sgr A*
- Studying the interaction of the central source with neighbouring clouds

CTA Science Working Groups

- 1. Galactic science:
 - SNRs
 - PWNs
 - Pulsars
 - Binaries
 - Other Galactic sources
- 2. Cosmic rays:
 - Molecular clouds
 - Diffuse emissions
 - Normal galaxies
 - Starburst galaxies
 - Galaxy clusters
 - Cosmic-ray nuclei
 - Cosmic-ray electrons
- 3. Extragalactic science:
 - Blazars
 - Non-blazar AGNs
 - Other extragalactic sources
 - Intergalactic magnetic fields
 - Extragalactic background light

- 4. Transients:
 - Galactic transients
 - Extragalactic transients
 - GRB
 - Multi-messenger studies
- 5. Dark Matter and exotic physics:
 - Dark Matter
 - Axions
 - Lorentz Invariance Violations
- 6. Intensity interferometry

• CTA will be an observatory open to the scientific community.

• Science will focus on cosmic particle acceleration, extreme environment, and physics beyond the standard model.

- Proprietary time (significant fraction in the first years) will be articulated in Key Science Programmes.
- Science working groups are being renovated