Periodicity in gamma-ray blazars. The case of PG 1553+113

A. Stamerra (INAF-OATo and SNS-Pisa)

and

S. Cutini, S. Ciprini, R. Corbet, S. Larsson, D. Thompson *on behalf of the Fermi/LAT collaboration

E. Prandini, S. Paiano, P. Da Vela, H. Gareth *on behalf of the MAGIC collaboration

Hyerarchical structure formation
 Mergers

A. Stamerra 21 June 2016

Mergers

SMBH pairs and binaries

A. Stamerra 21 June 2016

- Mergers
- SMBH pairs and binaries

A. Stamerra 21 June 2016

Mergers

SMBH pairs and binaries

Courtesy Paramita Barai, SNS-Pisa

A. Stamerra 21 June 2016

Mergers

SMBH pairs and binaries

500Mpc-N256-Zoom-3-KickProbGT1 / z = 8.98266

A. Stamerra 21 June 2016

= 5.122 Gyv

8

Face-On

Mergers

A. Stamerra 21 June 2016

SMBH pairs and binaries

500Mpc-N256-Zoom-3-KickProbGT1 / z = 7.999666

= 5.122 Gyv

8

Face-On

- Mergers
- SMBH pairs and binaries

500Mpc-N256-Zoom-3-KickProbGT1 / z = 7.298382

A. Stamerra 21 June 2016

- Mergers
- SMBH pairs and binaries

500Mpc-N256-Zoom-3-KickProbGT1 / z = 6.799726

A. Stamerra 21 June 2016

- Mergers
- SMBH pairs and binaries

500Mpc-N256-Zoom-3-KickProbGT1 / z = 6.397416

A. Stamerra 21 June 2016

MergersSMBH pairs and binaries

500Mpc-N256-Zoom-3-KickProbGT1 / z = 6.198026

A. Stamerra 21 June 2016

MergersSMBH pairs and binaries

500Mpc-N256-Zoom-3-KickProbGT1 / z = 5.998093

A. Stamerra 21 June 2016

- Binaries (sub-pc systems): indirect search
 - Double or asymmetric spectral lines (but Liu+2015 arXiv:1512.01825)
 - Helical, distorted jets; TDE dips in ligh-curve
 - Periodic light-curve
- Observational evidence important to solve the theoretical "final pc" problem

- **Binaries (sub-pc systems): indirect search**
 - Double or asymmetric spectral lines (but Liu+2015 arXiv:1512.01825)

•

٠

•

٠

٠

•

٠

...

- Helical, distorted jets; TDE dips in ligh-curve
- Periodic light-curve
- Quite some claims of periodic AGN lightcurves and binary **SMBH** interpretations

Graham et al. 2015, Nature 518

- > Reliability of AGN Periodicity
 - Yearly periodicity over ~Myr activity
 - QPO (quasi-periodic oscillations)
 - The significance of any apparent periodic variation depends on what assumption is made about spurious stochastic variability.
- ➤ AGN periodicity → binary BH system?
 Different plausible models with single SMBH

PG 1553+113

Blazar, radio-loud, HBL

- Uncertain redshift z~0.5 Danforth et al. 2010, also Abramwoski et al. 2015

• Well established γ-ray emitter and TeV source

- Hard spectrum in Fermi/LAT

 Dominant non-thermal emission from the jet

→ Raiteri, AS, et al. MNRAS 2015

A caccia di sistemi binari supermassivi

Stefano Ciprini

A caccia di sistemi binari supermassivi

PG1553 periodicity in Fermi/LAT

First clear detection of γ -ray periodicity in a BL Lac

PG1553 periodicity in Fermi/LAT

- **Periodicity analysis:** Power Density Spectrum (E>100 MeV, 600s time bin)
 - Period γ: 2.16+/-0.08 yr

PG1553 periodicity in Fermi/LAT

- Periodicity analysis: period and significance
 - Period γ: 2.18+/-0.08 yr
 - < 1% random fluctuation from LSP (red noise spurious model)</p>
 - ~1% chance probability of random line up of 3.5 peaks

PG1553 periodicity: MWL

- MWL: optical, radio, X-ray
 - X-ray (XRT) too sparse
- Optical Periodicity analysis (over ~10 years, ~4.5 cycles)

A. Stamerra 21 June 2016

PG1553 periodicity: MWL

- MWL: optical, radio, X-ray
 - X-ray (XRT) too sparse
- Optical Periodicity analysis (over ~10 years, ~4.5 cycles)
 - Period γ: 2.05+/-0.05 yr
 - < 5% random fluctuation from LSP (red noise spurious model)</p>

A. Stamerra 21 June 2016

Interpretation of periodicity

PG1553+113 dominated by non-thermal emission from the jet.

Periodicity may be the result of:

- Processes at the base of the jet inducing quasi-periodic oscillations
- Geometrical effects on the jet
- Output Binary and single SMBH can be invoked

Processes at the base of the jet

- Accretion rate perturbations model
 - milli-pc system: gravitational wave driven inspiral stage!
 - claims on other sources, e.g. PG1302-102 Graham+2015 or OJ287 Sillampää+1988,Lehto&Valtonen 1996

A. Stamerra 21 June 2016

Binary SMBH system

Geometrical models

- Variation of jet viewing angle → doppler factor
 ~40% → ~3 γ-rays, 1°
- Jet precession (induced by the binary system)
 - T_{prec} ~ 600 yr Begelmann
 et al. 1980
 - Possible beaming effect
 - $T_{obs} = T_{int} / \Gamma^2$ Rieger 2004, ApJL 615

Alternative models

Jet feeding

- QPO from warped disk e.g. Nealon+2015
- QPO from choking of magnetic arrested disk (MAD, Tchekhovskoy et al. 2011)

Alternative models

Jet feeding

- QPO from warped disk e.g. Nealon+2015
- QPO from choking of magnetic arrested disk (MAD, Tchekhovskoy et al. 2011)

Geometrical

- Helical jet (QPO) Villata&Raiteri 1999
- Jet precession (BH-spin, Lense-Thirring), rotation
 Long periods expected

Single SMBH

MWL campaign

- Regular MWL monitoring started at the end of 2014
 - from radio to VHE gamma-rays
- Make ready for the next high-activity; expected beginning 2017
- Led by the MAGIC collaboration

Major Atmospheric Gamma Imaging Cerenkov Telescopes

The MAGIC Experiment

- Active from 2004
- In stereo configuration since 2009
- New MAGIC1 camera since 2012
- New mirrors for MAGIC 1 from august 2014
- At least 5 more years foreseen

- 2x17m diameter (A=472 m²⁾
- High resolution cameras (PSF ~0.06°, FoV = 3.5°)
- Hemispherical PMT with enhanced QE

Fast repointing capability: ~8 degree/s

The MAGIC Collaboration

~170 Collaborating Astro-Physicists from 10 Countries

Bulgaria	Sofia			
Croatia	Consortium (Zagreb, +)			
Finland	Consortium (Tuorla, +)			
Germany DESY Zeuthen, TU Dortmund,				
	MPI Munich, U. Würzburg			
India	Saha Inst. of Nuclear Physics, Kolkata			
Italy	INFN & U. Padova, INFN Pisa & U. Siena, INFN Como/Milano Bicocca, INFN Udine/Trieste & U. Udine,			
	INAF			
Japan	Consortium (Kyoto, +)			
Poland	Lodz			
Spain	U. Barcelona, UAB Barcelona, IEEC- CSIC Barcelona, IFAE Barcelona, IAA Granada, IAC Tenerife, U. Complutense Madrid, CIEMAT Madrid			

Switzerland ETH Zurich

MAGIC sensitivity

MAGIC Science

Galactic sources: Pulsars, PWN, SNR, Binaries

AGNs: Blazars, Radio Gal., ... Galaxies & RQ AGNs: RC accel.

Fundamental physics: Dark matter, LIV, EBL, IGMF & cosmology

GRBs, GW, Transients

Exploring CRAB with MAGIC

CRAB Nebula:

- High precision energy spectrum: 50 GeV to ~30 TeV, 5 bins per decade.
- Observations at E > 80 TeV (high-Zd) are allowing the K-N regime exploration.
- Combined fit with Fermi data yields the most precise measurement of the IC peak: 52.5 +/-1.6 GeV

CRAB Pulsar:

- First detection of Crab Pulsar at VHE back in 2008 (E>25 GeV).
- 320 hours of observation: detection above 400 GeV; spectrum extending up to TeV energies.
- A VHE emission "bridge" up to 400 GeV

Ansoldi et al., A&A 582 (2016) A133

Extreme Flares: the case of IC310

Flaring activity with ultra-fast variability (< 5 min) detected in 2012 => sub-horizon variability challenges shock-in-jet models. Possible scenarios:

- mini-jet
- jet-cloud interactions
- magnetospheric origin of gamma-rays

10000

Aleksić et al. (MAGIC) Science 346, 2014

FSRQs

- Most distant TeV objects → gamma-ray horizon (EBL absorption)
- Strong BLR \rightarrow internal γ - γ absorption (PKS 1222+216)
- Delayed lensed emission (B0218+35)
- In perspective: precision spectral measurements (wiggles, axions, detailed flare description, IGMF,...)

FSRQ	Redshift	First VHE detection by:	Year
3C 279	0.536	MAGIC	2006
PKS 1510-089	0.361	HESS	2009
PKS 1222+216 (4C +21.35)	0.432	MAGIC	2010
B0218+35	0.944	MAGIC	2014
PKS 1441+25	0.939	MAGIC	2015
S4 0954+65*	0.368	MAGIC	2015

A. Stamerra 21 June 2016

B 0218+357

- FSRQ at z = 0.944
- Gravitationally lensed
- Flare in July 2014 → Discovery
- Variability in V/HE, none in sub-TeV

MAGIC Highlights - Blois 2016

The baseline: a old MAGIC friend with a young touch on periodicity

- Long-term observations with MAGIC since 2005
- MAGIC regular monitoring since 2014

The baseline: a old MAGIC friend with a young touch on periodicity

- Long-term observations with MAGIC since 2005
- MAGIC regular monitoring since 2014
- campaign successful; one pointing every 10/15 days
- 2016 MWL campaign on-going

F [Jy]

-115

Mag

S-1

.u 0.1

0

- 0.15

0.1

0.0

Ę

0.15

0.015 Band

-14.5

2009

2015

2012 2013

II MAGIC team su PG 1553+113

Simona Paiano - INAF Padova

Paolo Da Vela - INFN Pisa

Elisa Prandini - Università Ginevra e INFN-Padova

II MAGIC team su PG 1553+113

Simona Paiano - INAF Padova

Paolo Da Vela - INFN Pisa

Elisa Prandini - Università Ginevra e INFN-Padova

Summary

- First clear evidence of gamma-ray periodic emission from a AGN
 - Confirmed in optical; hint in radio
- Interpretation still open
 - Possible milli-pc SMBH binary system
 - QPO from helical paths or flow instabilities
- Regular MWL observations
 - Disentangle flaring episodes from long-term
 - modulation
 - MAGIC TeV observations and MWL campaign

2009

2010

2011

2012

2013

2014

2015

Next maximum expected ~January 2017

Last month update

- An enhancement of the X-ray flux detected at the end of April (ATel #8998)
- Very good coverage by MAGIC and Swift
- Similar to the flare on April 2012 Aleksić et al. (MAGIC coll.), 2015 MNRAS, 450

In Swith here error 2013 December 24 and 2016 April 19 on the basis of one. Antonio Bieremetric and Abr Falcowski TaO supports of a difference priority. During this meanizating, the 0.3×10 keV count rate initially increment from 0.325×0.01 circle to 3.07×0.04 circle, then it despeted to 1.07×0.00 circle in 31.4 c. Abre the subsequent increases to 80% in 6.4, the count rate showed a permanent deep by a factor of 2.43 (01):03.55 \times 0.010 circle (00) in 9.2 to 10.25 keV discretion of the revealed the count rate of 1.45 \times 0.010 evident circle (14). The today's discretion discretion of the revealed the count rate of 1.45 \times 0.010 evident circle (15) and (15) keV discretion discretion of the revealed the count rate of 1.45 \times 0.010 evident circle (15) member (with the count rate that meaning the discretion of the object are torongly in countary with the count rate lengthwavelength to be available of this source. Nevertheless, an increasing activity is repected in the UV-radius and generatives in this source. Nevertheless, an increasing activity is represent in the

The baseline: a old MAGIC friend with a young touch on periodicity

- Long-term observations with MAGIC since 2005
- MAGIC regular monitoring since 2014
- campaign successful; one pointing every 10/15 days
- 2016 MWL campaign on-going

A. Stamerra 21 June 2016

- Binary SMBH predicted by hierarchical models
 - Prediction (Volonteri+2009): 10
 over 10000 sample at z<0.7
- Selective effects ?
 - AGN as mergers Fu+2014, Chiaberge+2015
 - Evolution Cavaliere+2002, Ajello+2014
 - > BL Lac as preferred host of SMBH binaries?

AGN as mergers

- Mergers → SMBH accretion → AGN activity
- Higher fraction of AGN radio loud in mergers Fu et al. 2014, Chiaberge et al. 2015
- FSRQ → BL Lac evolution Cavaliere et al. 2009, Ajello et al. 2014
- > BL Lac as preferred hosts of SMBH binaries?

A. Stamerra 21 June 2016

14th AGILE Workshop – ASI Roma

L. Blecha et al. 2011 MNRAS 412

PG1553 periodicity: MWL

- MWL: optical, radio, X-ray
 - X-ray (XRT) too sparse

A. Stamerra 21 June 2016

PG1553 periodicity: time lags

Possible clues on underlying periodic process

- Radio-γ: 50+/-10 days (98% CL)
- Optical-γ: 130 to 10 days

PG1553 periodicity: time lags

Possible clues on underalying periodic process

- Radio-γ: 50+/-10 days (98% CL)
- Optical-γ: 130 to 10 days
 - No lag with binned opt-LC
- Time lags depend on short structures in LC
 - E.g. peaks seen in optical band not resolved in LAT
 - IACTs sensitivity may solve this!

