Wide FoV detectors operated at Extreme Altitude

G. Di Sciascio with P. Montini e G. Piano INFN, Sezione Roma Tor Vergata
disciascio@roma2.infn.it

15th AGILE Science Workshop
May 24, 2017 - ASI Headquarters, Rome

Pointed and Survey Instruments

Pointed and Survey Instruments

The strong case for all sky survey instruments

The all-sky survey provides un unbiased map of the sky useful to

- enable the detection of unexpected sources
- provides testing ground for new theoretical ideas
- provides targets for in-depth observations
- study of flaring phenomena (GRBs, solar flares, AGNs)
- probe of diffuse emission on scales of several degrees
- study of localized CR anisotropies
- search for small and nearby high latitude molecular clouds

- constraints on Dark Matter at multi-TeV scale by 'stacked analysis'
- blind search for annihilation in Dark Matter subhalos of the Galaxy, without any a priori association with an astrophysical object (dwarf galaxy, Galactic Center, etc)
- search for new, unexpected classes of VHE sources ('dark accelerator') useful to constrain the density in the Galactic halo of cloudlets: cold and dense clumps of material that may constitute a sizeble fraction of baryonic matter mostly invisible but not for their gamma-ray emission for CR interaction

We need to know

\star Which are the sources of CRs ?

- which acceleration mechanism? \rightarrow injection spectrum
- total energy in CRs
- maximum energy of accelerated particles
\star How do CRs propagate?
- magnetic field in the Galaxy
- spatial distribution of sources
- spatial distribution of CRs
- injected \rightarrow observed spectrum
\star Which is the chemical composition of CRs ?

Why are Wide FoV instruments so cool ?

\star Which are the sources of CRs
\rightarrow Gamma-Ray Astronomy

- which acceleration mechanism? \rightarrow injection spectrum
- total energy in CRs
- maximum energy of accelerated particles \rightarrow proton PeVatrons
\star How do CRs propagate?
- magnetic field in the Galaxy
- spatial distribution of sources
- spatial distribution of CRs \rightarrow Anisotropy
- injected \rightarrow Observed spectrum

Which is the chemical composition of CRs

Why are Wide FoV instruments so cool?

\star Which are the sources of CRs

\rightarrow Gamma-Ray Astronomy

- which acceleration mechanism? \rightarrow injection spectrum
- total energy in CRs
- maximum energy of accelerated particles
\star How do CRs propagate?
- magnetic field in ${ }^{\text {+r }}$

FO , cted \rightarrow observed spectrum

Which is the chemical composition of CRs

Gamma-ray experiments

Northern Hemisphere: HAWC

The High Altitude Water Cherenkov Gamma-ray Observatory (HAWC) is up and running

Goals: observe gamma rays and cosmic rays from half the sky each day between 100 GeV and 100 TeV

- 4100 meters above sea level

- $19^{\circ} \mathrm{N}$ latitude (Galactic Center at 48° zenith)
x [meter]
- 300 water tanks, 1200 large photocathode area PMTs 1/6th of sky in instantaneous field of view
- Instrumented Area: 22,000 m² $\approx 140 \times 140 \mathrm{~m}^{2}$
- Coverage factor: ≈ 60 \%
- 10 kHz event rate

Water Cherenkov Method

- Robust and cost-effective surface detection technique
- Water tanks: 7.3 m radius, 5 m height, 185 kL purified water
- Tanks contain three 8" R5912 PMTs and one 10" R7081-HQE PMT looking up to capture Cherenkov light from shower front

Final tank deployed: December 15, 2014

Background rejection

Hadronic showers typically deposit large amounts of energy in distinct clumps far from the shower core ($>40 \mathrm{~m}$) \rightarrow CR rejection using topological cut in hit pattern (the pattern of energy deposition in the detector)

Requires sufficient number of triggered channels (>70) to work well. Q-value $\max \left(\varepsilon_{\gamma} / \sqrt{ } \varepsilon_{C R}\right)$ is estimated ~ 5 for point sources.

Crab Nebula with HAWC

The Crab spectrum measured with HAWC between 1 and 37 TeV with 507 days of data
arXiv:1701.01778

The threshold for this analysis is established by including only events where more than 70 PMTs detect light. Events with 20-30 PMTs could be reconstructed if the noise could be confidently identified.

2nd HAWC Catalog

```
arXiv:1702.02992
```

Table 1. Properties of the nine analysis bins: bin number \mathcal{B}, event size $f_{\text {hit }}, 68 \%$ PSF containment ψ_{68}, cut selection efficiency for gammas $\epsilon_{\gamma}^{\mathrm{MC}}$ and cosmic rays $\epsilon_{\mathrm{CR}}^{\text {data }}$, and median energy for a reference source of spectral index -2.63 at a declination of $20^{\circ} \tilde{E}_{\gamma}^{\mathrm{MC}}$.

\mathcal{B}	$f_{\text {hit }}$	ψ_{68}	$\epsilon_{\gamma}^{\mathrm{MC}}$	$\epsilon_{\mathrm{CR}}^{\text {data }}$	$\tilde{E}_{\gamma}^{\mathrm{MC}}$
	$(\%)$	$\left({ }^{\circ}\right)$	$(\%)$	$(\%)$	(TeV)
1	$6.7-10.5$	1.03	70	15	0.7
2	$10.5-16.2$	0.69	75	10	1.1
3	$16.2-24.7$	0.50	74	5.3	1.8
4	$24.7-35.6$	0.39	51	1.3	3.5
5	$35.6-48.5$	0.30	50	0.55	5.6
6	$48.5-61.8$	0.28	35	0.21	12
7	$61.8-74.0$	0.22	63	0.24	15
8	$74.0-84.0$	0.20	63	0.13	21
9	$84.0-100.0$	0.17	70	0.20	51

Energy threshold $\approx 700 \mathrm{GeV}$

7 of the detected sources may be associated with PWN, 2 with SNRs, 2 with blazars, and the remaining 23 have no firm identification yet.

Northern Hemisphere: LHAASO

- $1.3 \mathrm{~km}^{2}$ array, including 5195 scintillator detectors $1 \mathrm{~m}^{2}$ each, with 15 m spacing.
- An overlapping $1 \mathrm{~km}^{2}$ array of 1171, underground water Cherenkov tanks $36 \mathrm{~m}^{2}$ each, with 30 m spacing, for muon detection (total sensitive area $\approx 42,000 \mathrm{~m}^{2}$).

- A close-packed, surface water Cherenkov detector facility with a total area of $80,000 \mathrm{~m}^{2}$.
- 18 wide field-of-view air Cherenkov (and fluorescence) telescopes.
- Neutron detectors

Status of the experiment

The LHAASO site

The experiment will be located at 4400 m asl $\left(600 \mathrm{~g} / \mathrm{cm}^{2}\right)$ in the Haizishan (Lakes' Mountain) site, Sichuan province

Coordinates: $29^{\circ} 21^{\prime} 31^{\prime \prime} \mathrm{N}, 100^{\circ} 08^{\prime} 15^{\prime \prime} \mathrm{E}$

700 km to Chengdu

50 km to Daocheng City (3700 m asl, guest house)
10 km to the highest airport in the world

LHAASO installation: muon detectors

Living Base and Data Center at Daocheng

Daocheng town, 50 km from the site at 3750 m asl

Guest House for 50 persons
Assembling House
\& Meeting room

LHAASO: from γ-Ray Astronomy to Cosmic Rays

LHAASO is an experiment able of acting simultaneously as a Cosmic Ray Detector and a Gamma Ray Telescope
$\%$ Cosmic Ray Physics ($10^{12} \rightarrow 10^{18} \mathrm{eV}$): precluded to Cherenkov Telescopes

- CR energy spectrum
- Elemental composition
- Anisotropy

\% Gamma-Ray Astronomy ($10^{11} \rightarrow 10^{15} \mathrm{eV}$): full sky continuous monitoring
- Complementary with CTA below 20 TeV , with better sensitivity at higher energies and for flaring emission (GRBs), unbiased all-sky survey, extended and diffuse emission.
- Searching for PeVatrons (\rightarrow neutrino sources)

Gamma-Ray Astronomy with LHAASO

LHAASO will observe at TeVs, with high sensitivity, >40 of the sources catalogued by Fermi-LAT at lower energy, monitoring the variability of >20 AGNs.

Wide Field of View Cherenkov Telescopes

> One of the main component of LHAASO is the array of Wide Field of View Cherenkov Telescopes WFCTA.

The goal: measurement of the CR energy spectrum and composition in the range $10^{13}-10^{18} \mathrm{eV}$

Why Cherenkov telescopes at high altitude ?

Phys. Rev. D 92, 092005 (2015)

Observation modes: Cherenkov and Fluorescence Light in Phase-II

SiPM camera and focal plane

SiPM pixel:
2×2 SiPM $0.75 \mathrm{~cm}^{2}$ area

1 HV per pixel
1 temperature sensor per pixel

Winston Cone
EXIT: $20 \mathrm{~mm} \times 20 \mathrm{~mm}$
ENTRANCE: $24.4 \mathrm{~mm} \times 24.4 \mathrm{~mm}$
HEIGHT: 9.6 mm

SiPM camera: 32×32 SiPM pixels

8×8 module camera box
$64 \times$ modules

A module has 4×4 pixels

$$
\text { Focal Plane: } 2.25 \mathrm{~cm}^{2} \times 1024=2304 \mathrm{~cm}^{2} / \text { telescope } \rightarrow 4.15 \mathrm{~m}^{2} \text { SiPM total + spare }
$$

A SiPM module

A bidding procedure is underway to buy the SiPMs for WFCTA telescopes.
LFoundry company (with INFN for WB packaging) will respond to the bid.
We hope that the SiPMs developed by INFN-FBK for the first time will instrument an operating Cherenkov telescope array.

First telescope in commissioning by the end of 2017!

Southern Hemisphere: ALPACA

ALPACA layout

Southern Hemisphere: LATTES

arXiv:1607.03051

P. Assis, U. Barres de Almeida, A. Blanco, R. Conceicao, B. D’Ettorre Piazzoli, A. De Angelis, M. Doro, P. Fonte, L. Lopes, G. Matthiae, M. Pimenta, R. Shellard, B. Tome'

An array of hybrid detectors constituted by

1. one Water Cherenkov Detector (WCD) with a rectangular horizontal surface of $3 \mathrm{~m} \times 1.5 \mathrm{~m}$ and a depth of 0.5 m , with signals read by PMTs at both ends of the smallest vertical face of the block.
2. On top of the WCD there are two MARTA RPCs, each with a surface of $(1.5 \times 1.5) \mathrm{m}^{2}$ and with 16 charge collecting pads. Each RPC is covered with a thin (5.6 mm) layer of lead.

LATTES performance

Preliminary calculations

Baseline configuration with 60 rows and 30 lines, instrumented area $\approx 10,000 \mathrm{~m}^{2}$.

Simulated site at 5200 m as

Southern Hemisphere: STACEX

Calorimetric approach with a double layer of RPCs (with lead layer in between) to enhance the conversion of secondary photons.

- A RPC carpet of $100 \times 100 \mathrm{~m}^{2}$ at least
- bakelite RPCs (ARGO-like)
- fully 'analog' read out

A study is underway in Rome to investigate the sensitivity of a RPC carpet operated at extreme altitude.

TeV - PeV γ-ray astronomy

LHAASO sensitivity is well matched to current generation of IACTs (HESS, VERITAS, MAGIC)

CTA Sky Survey Plans

CTA:
\star Survey of entire Galactic Plane to $\approx 2-4$ mCrab
\star Unbiased survey of $1 / 4$ sky to $\approx 6 \mathrm{mCrab}$
from R. Ong, 2015

- Previous Surveys:

Experiment	Hemisphere	Galactic Plane Coverage	Energy (GeV)	Sensitivity (mCrab)
H.E.S.S.-I	S	$-70^{\circ}<l<60^{\circ},\|b\|<2^{\circ}$	$>\sim 300$	$10-30$
VERITAS	N	$67^{\circ}<l<83^{\circ},-1^{\circ}<b<4^{\circ}$	$>\sim 300$	$20-30$
ARGO-YBJ	N	N	Northern Sky	>300
HEGRA	N	$-2^{\circ}<l<85^{\circ},\|b\|<1^{\circ}$	>600	$150-250-1000$
Milagro	N	Northern Sky	$>10,000$	$300-500$

- Present/Future Surveys:

Observatory	Hemisphere	Energy Threshold	Angular Resolution	Pt. Source Sensitivity
CTA	N, S	125 GeV	$\sim 0.07^{\circ}$ at 1 TeV	$2-4 \mathrm{mCrab}$
HAWC	N	2 TeV	0.30°	$20 \mathrm{mCrab} \quad(5 \mathrm{yr})$
LHAASO	N	$\approx 500 \mathrm{GeV}$	$\approx 0.30^{\circ}$ at 1 TeV	$10 \mathrm{mCrab}(1 \mathrm{yr})$

CTA and a new Wide FoV observatory

A future Wide FoV Observatory to be useful to CTA needs:

- $\approx 5 \mathrm{x}-10 \mathrm{x}$ greater sensitivity below TeV
- Lower energy threshold ($\approx 100-300 \mathrm{GeV}$)
- Ability to detect extragalactic transient (AGN, GRBs)
- Southern hemisphere site
\star Is this possible?

Minimum Detectable Gamma-Ray Flux (1 year):

$$
\Phi_{\gamma}^{M D F} \propto \sqrt{\Phi_{B}} \cdot \frac{1}{R \cdot \sqrt{A_{e f f}^{\gamma}}} \cdot \psi_{70} \cdot \frac{1}{Q_{f}}
$$

$$
\begin{gathered}
\Phi_{B}=\text { background flux } \\
\psi_{70}=\text { opening angle } \\
A_{e f f}^{\gamma, p}(E)=\text { effective area } \\
R=\sqrt{\frac{A_{e f f}^{\gamma}(E)}{A_{e f f}^{B}(E)}} \\
Q_{f}=\frac{\text { fraction of surviving photons }}{\sqrt{\text { fraction of surviving hadrons }}}
\end{gathered}
$$

Lowering the energy threshold: extreme altitude

HAWC (4100 m asl)
ARGO-YBJ/LHAASO (4400 m asl) $=1$, 1 energy thr.
Chacaltaya (5200 m asl) $\approx 2 \mathrm{x}, \approx 3 \mathrm{x}$ energy thr.
6000 m asl $\approx 3 \mathrm{x}, \approx 5 \mathrm{x}$ energy thr.
increase in size

decrease in en. thr.

Lowering the energy threshold:

- Extreme altitude (>4400 m asl)
- Detector and layout
- Coverage
- Detection of secondary photons

Energy threshold

Figure 3. Normalized distribution of the primary gamma-ray energy for different $N_{\text {pad }}$ intervals, for a Crab-like source.

```
full coverage RPC carpet operated at 4300 m asl
coverage = 92%
high granularity
```

coverage $\approx 92 \%$
high granularity

```
full coverage RPC carpet operated at 4300 m as
```

, high granularity

HAWC (2017)

array of water tanks operated at 4100 m asl coverage $\approx 60 \%$

Secondary photons

gamma rays dominate the particles on ground ($\approx 7: 1$ for $100 \mathrm{GeV} \gamma$-showers at 4300 m asl)

In γ-showers the ratio $\mathrm{N} \gamma / \mathrm{Nch}$ decreases if the comparison is restricted to a small area around the shower core. For instance, we get $\mathrm{N} \gamma / \mathrm{Nch} \approx 3.5$ at a distance $r<50 \mathrm{~m}$ from the core for 100 GeV showers.

The number of secondary photons in γ-showers exceeds the number of gammas in p -showers with increasing altitude.

Detection of secondary photons very important to lower the energy threshold and to improve the angular resolution

Effect of a lead converter above a detector

The consequences of placing a thin sheet of dense, high-Z material, above detectors are, qualitatively:
(1) low-energy electrons are absorbed and no longer contribute to the signal (low-energy photons are also absorbed),
(2) high-energy electrons produce an enhanced signal size through multiplication,
(3) high-energy photons materialise, producing additional signal contributions similar in size to those produced by (2).

The number of particles gained from processes (2) and (3) exceeds that lost through (1) and hence the Rossi transition effect is observed.

$\left(\chi^{2}\right)^{1 / 2}$ represents (approximately) the average time spread

The enhanced signal alone, arising from this, will reduce the timing fluctuations.

In addition, the contributions gained are concentrated near the ideal time because the higher energy electrons and photons travel near the front of the particle swarm (they suffer from smaller time delays) while those lost tend to lag far behind.

Test with ARGO at YBJ

Angular resolution

(1) larger carpet: ang. res. improves with the lever arm \rightarrow from ARGO to $100 \times 100 \mathrm{~m}^{2}: \approx 1.4 \mathrm{x}$
(2) 0.5 mm lead: $\approx 1.5 x$ at the threshold
(3) 5200 m asl: $\approx 2 \mathrm{x}$ in size $\rightarrow \approx 1.4 \mathrm{x}$
bin 20-40 pads: photons
$\mathrm{E}_{50} \approx 360 \mathrm{GeV}(\approx 1 \mathrm{TeV}$ for protons)
$\sigma_{\theta} \approx 1.66^{\circ}$ (2D Gaussian PSF)
$\varepsilon_{\gamma}=73 \%$

At 5200 m asl we expect $\approx 2.7 \mathrm{x}$
$\rightarrow \sigma_{\theta} \approx 0.6^{\circ}$ at $\approx 300 \mathrm{GeV}$
detailed calculations under way!

High altitude \rightarrow rejection of the background 'for free' !

G. Di Sciascio

$$
R=\sqrt{\frac{A_{e f f}^{\gamma}(E)}{A_{e f f}^{B}}(E)}
$$

$\gamma /$ hadron relative trigger efficiency

The number of particles in γ-showers exceeds the number of particles in p showers at extreme altitude.

Trigger probability of a detector larger for γ-showers than for p showers at extreme altitude.

Effective Area

The Effective Area is function of

- Number of charged particles
- Dimension and coverage of the detector
- Trigger Logic

Effective Areas at 100 GeV :
$\approx 1000 \mathrm{~m}^{2}$ at 5200 m as
$\approx 5000 \mathrm{~m}^{2}$ at 6000 m as

Effective Areas at 300 GeV :
$\approx 10,000 \mathrm{~m}^{2}$ at 5200 m as
$\approx 20,000 \mathrm{~m}^{2}$ at 6000 m as

detailed calculations under way !

1 TeV showers at 4300 m asl

3 TeV showers at 4300 m asl

Charged particles in a 3 TeV shower

Gamma/Hadron discrimination

Very difficult at low energy ($<1 \mathrm{TeV}$)

Muon size very small
HAWC/LHAASO approach requires large area: discrimination based on topological cut in the pattern of energy deposition far from the core ($>40 \mathrm{~m}$).

Requires sufficient number of triggered channels (>70-100)
\rightarrow minimum energy required $\mathrm{E}>0.5 \mathrm{TeV}$

Discrimination capability depends on detector area
\rightarrow according to HAWC/LHAASO calculations sensitivity $\approx \mathrm{A}_{\text {eff }}{ }^{0.8}$ and not $\mathrm{A}_{\text {eff }}{ }^{0.5}$ up to $\approx 300 \times 300 \mathrm{~m}^{2}$ at TeV energies
LHAASO Q-factor: 3 at $500 \mathrm{GeV}, 7$ at $1 \mathrm{TeV}, 22$ at 5 TeV .
New ideas?

Minimum Detectable Flux in 1 year

$$
\Phi_{\gamma}^{M D F}=4.6 \cdot 10^{-3} \cdot \sqrt{\Phi_{B}} \cdot \frac{1}{R \cdot \sqrt{A_{e f f}^{\gamma}}} \cdot \psi_{70} \cdot \frac{1}{Q_{f}}
$$

300 GeV :

$$
\begin{aligned}
& \psi_{70}=1.58 \cdot 0.6^{\circ} \approx 1^{\circ} \quad \mathrm{R}=4 \\
& \Phi_{\gamma} \mathrm{CRAB}(>300 \mathrm{GeV}) \approx 1.4 \cdot 10^{-10} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
& \Phi_{\mathrm{B}}(>\mathrm{E})=1.30 \cdot\left(\mathrm{E}_{\mathrm{GeV}}\right)^{-1.66} \text { particles } \mathrm{cm}^{-2} \mathrm{~s}^{-1} \mathrm{sr}^{-1} \quad(\text { Horandel })
\end{aligned}
$$

$$
\begin{array}{lcc}
\frac{2 \cdot 10^{-7}}{\sqrt{A_{e f f}}} \frac{1}{Q_{f}} & A_{\text {eff }}=10^{8} \mathrm{~cm}^{2} \\
& \left.A_{\text {eff }}=100 \times 100 \mathrm{~m}^{2}\right) \\
\left(300 \times 300 \mathrm{~cm}^{2}\right)
\end{array} \quad \frac{2 \cdot 10^{-11}}{Q_{f}} \approx \frac{0.15}{Q_{f}} \quad \text { Crab } \quad \approx 2 \mathrm{x} \text { final ARGO }(0.2!
$$

Open problems

- Conversion of secondary photons
- Angular resolution
- $\gamma /$ h discrimination $<$ TeV

Conclusions

Open problems in cosmic ray physics push the construction of new generation Wide FOV experiments.
With ARGO-YBJ we demonstrated that RPCs can be safely operated at extreme altitude for many years.
Benefits of RPCs in ARGO-YBJ:

- dense sampling \rightarrow low energy threshold $(\approx 300 \mathrm{GeV})$
- wide energy range (with charge read-out): $\approx 300 \mathrm{GeV} \rightarrow 10 \mathrm{PeV}$
- high granularity of the read-out \rightarrow good angular resolution and unprecedented details in the core region

In the next decade CTA-North and LHAASO are expected to be the most sensitive instruments to study γ-ray astronomy in the Northern hemisphere from 20 GeV up to PeV .

- With CTA coming a future all-sky array should have $\sim 5 x$ increase in sensitivity over LHAASO at least.
- Extragalactic transient detection requires low threshold, $\approx 100 \mathrm{GeV}$.
- Extreme altitude ($\approx 5500 \mathrm{~m}$ asl) and high coverage are key.
- New ideas for background rejection below TeV for a few \% Crab sensitivity !
- High energy (>10 TeV) covered by ALPACA ?

Sensitivity to gamma point sources

EAS-array: 5 s.d. in 1 year

Cherenkov: 5 s.d. in 50 h on source
$\star 1$ year for EAS arrays means:
($5 \mathrm{~h} \times 365 \mathrm{~d}$) ~1500-2200 of observation hours for each source (about 4-6 hours per day).

* For Cherenkov:
$(5 \mathrm{~h} \times 365 \mathrm{~d}) \times$ d.c. $(\approx 15 \%) \approx 270 \mathrm{~h} / \mathrm{y}$ for each source.

The big advantage of EAS arrays

- High Energy (>10 TeV)
- Sky Survey

LHAASO vs other EAS arrays

Experiment	Altitude (m)	e.m. Sensitive Area $\left(\mathrm{m}^{2}\right)$	Instrumented Area $\left(\mathrm{m}^{2}\right)$	Coverage
LHAASO	4410	5.2×10^{3}	1.3×10^{6}	4×10^{-3}
TIBET AS γ	4300	380	3.7×10^{4}	10^{-2}
IceTop	2835	4.2×10^{2}	10^{6}	4×10^{-4}
ARGO-YBJ	4300	6700	11,000	0.93 (central carpet)
KASCADE	110	5×10^{2}	4×10^{4}	1.2×10^{-2}
KASCADE-Grande	110	370	5×10^{5}	7×10^{-4}
CASA-MIA	1450	1.6×10^{3}	2.3×10^{5}	7×10^{-3}
		μ Sensitive Area	Instrumented Area $\left(\mathrm{m}^{2}\right)$	Coverage
LHAASO (\uparrow)	4410	4.2×10^{4}	10^{6}	4.4×10^{-2}
TIBET AS γ	4300	4.5×10^{3}	3.7×10^{4}	1.2×10^{-1}
KASCADE	110	6×10^{2}	4×10^{4}	1.5×10^{-2}
CASA-MIA	1450	2.5×10^{3}	2.3×10^{5}	1.1×10^{-2}

\checkmark LHAASO will operate with a coverage similar to KASCADE (about \%) over a much larger effective area.
\checkmark The detection area of muon detectors is about 70 times larger than KASCADE (coverage 5\%)!
\checkmark Redundancy: different detectors to study hadronic models dependence
(\downarrow) Muon detector area: $4.2 \times 10^{4} \mathrm{~m}^{2}+8 \times 10^{4} \mathrm{~m}^{2}(\mathrm{WCDA})$

SiPM matrix

Notes.
Maximum distance of the shower core from the detector center, beyond which the events are rejected.
Distance between the true and reconstructed cores containing 68% of the events.

The Astrophysical Journal, 798:119 (11pp), 2015 January 10

Figure 2. Angular resolution for different $N_{\text {pad }}$ intervals, according to simulations. The curves represent the fraction of events beyond the angular distance d from the source, as a function of d.

