

The connection between radio and gamma-rays in AGN: towards the SKA era

Filippo D'Ammando (DIFA Bologna and INAF-IRA Bologna)

...and Marcello Giroletti, Monica Orienti, Gabriele Giovannini

dammando@ira.inaf.it

15th AGILE Science Workshop - 2017 May 24

INAF Radio waves and gamma rays: an obvious couple

The radio-gamma connection

INAF

Istituto di Radioastrono

The radio-gamma connection

- for the whole 1LAC, the strongest correlation is found using Band 2 (0.3-1 GeV)

 HSP blazars are the subclass with the largest correlation coefficient in every band

- expect for Band 1 (0.1-0.3 GeV), where there are very few of them

Gamma-ray data correlate better with concurrent radio data rather than with archival data

te better -0.2 ---- BL Locs HSP ta rather 1 2 3 Energy band

 single dish: more resources available, denser time+frequency sampling (e.g. F-GAMMA, GASP-WEBT, OVRO); most practical for strongly beamed sources (little contamination from extended emission)

- Fuhrmann et al. (2014) analyzed 11cm to 0.8 cm (2.64 to 345 GHz) radio light curve and 3.5 years of *Ferm*i-LAT data of 54 blazars:
 - highly significant average radio lagging $\gamma\text{-rays}$ correlation, with $\Delta t {\sim} v^{-1}$ (SSA)
 - bulk y-ray production region within/upstream of the 3mm (86 GHz) core region ($\Delta t = 12 \pm 8$) days
 - mean distances between the region of γ -ray peak emission and the radio "core" is (0.9 \pm 1.1) pc (142 GHz)

VLBI monitoring projects

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

- MOJAVE: VLBA @15 GHz, 100's sources; BU: VLBA @43 GHz, 10's sources (sub-mas angular resolution); GENJI: VERA @22 GHz
- constrain epoch of component ejection and compare to gamma-ray flares
- determine (range of) velocity in jet motion and infer kinematic, geometric parameters
- polarimetry: B, ne

Unassociated gamma-ray sources

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

• Overall, about 30% of the Fermi sources lack a high-confidence lowfrequency counterpart. Are they blazars in disguise?

• The fraction of unassociated sources becomes larger for faint gamma-ray sources (larger error ellipse), associated with low flux density radio sources, whose space density is larger

• Large and deep high-frequency surveys are the best valuable resource to solve this issue (e.g. Australia Telescope 20 GHz survey, Murphy et al. 2010).

dammando@ira.inaf.it

- total collecting area of 1,000,000 m²: the largest radio telescope array ever constructed
- conceived in the 1990's, will become operational in 2020+
- members from 10+1 countries representing >40% of world population
- HQ in UK, instrument split between South Africa and Australia
- Italy is one of the founding members of the SKA organization

• Galaxy evolution, cosmology and dark energy

How do galaxies evolve? What is dark energy?

• Strong-field tests of gravity

Was Einstein right about gravity?

• The origin and evolution of cosmic magnetism

What generates giant magnetic fields in space?

• Probing the Cosmic Dawn

How were the first black holes and stars formed?

15th AGILE Science Workshop - 2017 May 24

• The cradle of life

Are we alone?

• Exploration of the unknown

dammando@ira.inaf.it

INAF

Istituto di Radioastronomia

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

- 2 phases
 - SKA1: construction 2018-2023
 - SKA2: detailed design >2018

- SKA1: dual site, dual scope (frequency & design)
 - SKA1-low (Australia)
 - SKA1-mid (South Africa)

- Australia
- Main driver: highly redshifted 21 cm HI line from the Epoch of Reionization and earlier
 - pulsars, magnetized plasma, extrasolar planets
- ~250000 antennas
- 50-350 MHz
- 1 km radius core
- 45 km maximum baseline
- 20 deg² field of view

• South Africa

- pulsars, nearby to mid-z HI line, high sensitivity continuum sources
- ~250 15m dishes (Meerkat+SKA1 dishes)
- 0.35-14 GHz; ready for additional receivers
- ~100 km maximum baseline, but it can be included in the VLBI network

UNIVERSITÀ DI BOLOGNA

- Increase total collecting area
 - 1,000,000 m²

- Improve angular resolution (longer baselines) at lower frequencies
 - ~1 mas

- Extend frequency coverage (additional receivers)
 - 20 GHz

dammando@ira.inaf.it

- new parameter space
 - low frequency window (LOFAR, MWA)
 - real time with long baselines (e-EVN, e-MERLIN, MeerKAT)
 - fast survey capability (APERTIF, ASKAP)

- of interest for AGILE, *Fermi*, eASTROGAM, CTA science targets such as:
 - beamed and misaligned relativistic jets, galaxy clusters, pulsars, novae, etc.

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

5	AGN	N physics	81
	5.1	Relativistic jets with SKA	
		A. Wolter, F. Tavecchio, G. Bonnoli, M.Giroletti, S. Turriziani, A. Tramacere, I. Don-	
		narumma, L. Costamante	81
	5.2	Radio emission from Low Luminosity radio-AGNs	
		M. Giroletti, F. Panessa	83
	5.3	Nuclear radio emission from quiescent galaxies	
		A. Capetti	84
	5.4	The life cycle of radio AGN	
		M. Murgia, P. Parma	85
	5.5	Probing AGNs with Water (Mega)Masers	
		A. Tarchi, P. Castangia	88

AGN keywords: sensitivity, polarization, variability

UNIVERSITÀ DI BOLOGN/

- Where are the gamma rays produced?
- What is the velocity and magnetic field structure of the jet?
- What is the electron energy distribution?

 could be addressed through a combined approach based on total intensity and polarization sensitive surveys and single dish and VLBI monitoring

Towards SKA science: M87

Data from a long & dense monitoring with the e-EVN reveal ejection of superluminal components within the jet knot HST-1 is temporally associated to 2008, 2011 VHE events.

v=(4.1+-0.1)c δ=1.5-4.0

High resolution, time resolved, sensitive, polarimetric observations of several individual sources will become possible with SKA

Giroletti, Orienti, D'Ammando, et al. 2015

 Simultaneous radio (SKA1-MID) and y-ray (Fermi and CTA) observations will reveal how much the scatter in the radio-gamma on correlation is due to non-simultaneity, providing insights on the size and the relative distance between radio and gamma-ray emitting regions

 Not only the radio flux but also the spectral index and the polarization percentage can be compared to the gamma-ray properties, tracing the compactness, core dominance, and magnetic field configuration of the gamma-ray emitting region

INAF

INAF Unassociated y-ray sources in the SKA era

Giroletti, Orienti, D'Ammando, et al. 2015

• SKA1 characteristics (wide field, polarimetry, band width, timing) will be essential for a characterization of the unassociated gammaray sources

• A first step will be the build up of a complete and deep blazar catalog by means of sky survey (e.g. EMU with ASKAP and VLASS with VLA)

• Dedicated multi-frequency, multi-epoch SKA1-MID observations will provide a better characterization of their spectral, variability, structural, and polarization properties

UNIVERSITÀ DI BOLOGNA

Radio Astronomy is entering a *Golden Age*

- Huge breakthrough for data, technology, and science
- Upgrade of existing instruments, new instrumentation, "new" technology (wider band, unprecedented computational power)
- New windows: *polarization* and *transients*
- and wait for SKA2!

Synergy with current (AGILE and Fermi) and future (CTA and e-ASTROGAM) gamma-ray satellies and facilities will be fundamental on several topics including AGN physics

