AGILE GALACTIC HIGHLIGHTS

GIOVANNI PIANO (INAF-IAPS, ROMA) ON BEHALF OF THE AGILE TEAM

AGILE 16th Science Workshop "Fast and AGILE: Multimessenger Astrophysics and Beyond" May 18, 2018

OUTLINE -> AGILE GALACTIC HIGHLIGHTS

- VARIABILITY OF THE CRAB NEBULA
- SNRs \rightarrow W44: direct evidence of CR acceleration
- GAMMA-RAY EMITTING BINARIES
- NOVAE

AGILE γ-ray image of our galaxy (E > 100 MeV) Pointing mode: July 2007 – July 2009

AGILE and the Crab Nebula

A standard candle ...

... until September 2010

AGILE and the Crab Nebula

Science Express (6 January 2011)

FIRST PUBLIC ANNOUNCEMENT Sept. 22, 2010: AGILE issues the Astronomer's Telegram #2855 announcing a gamma-ray flare from the Crab Nebula

Bernardini E., 2011

Bruno Rossi Prize from HEAD-AAS in 2012

⊢+ 5 Feb

54860

+16 Apr

+ 17 Oct

MJD

 \neg

54880

March 2013

April 2011

(Tavani et al., 2011) (Striani et al., 2011)

(Striani et al., 2013)

~ 22 ·10⁻⁶ ph cm⁻² s⁻¹

~ 11 ·10⁻⁶ ph cm⁻² s⁻¹

~ 10 days

~ 20 days

AGILE, Fermi-LAT

AGILE, Fermi-LAT

AGILE and the Crab Nebula

 γ -ray monitoring: April 2011

AGILE and the Crab Nebula

 γ -ray monitoring: April 2011

AGILE and the Crab Nebula The Crab Nebula steady spectrum

Linear accelerator in ideal MHD framework

$$t_{acc} = \frac{\gamma}{\omega_B} \frac{B}{E} \qquad t_{synch} = \frac{3m^3c^5}{2e^4B^2\gamma}$$
$$E_{\gamma,max} = \frac{9}{4} \frac{mc^2}{\alpha} \cdot E/B \simeq 150 \text{ MeV} \cdot E/B$$

Nebula \rightarrow B = 200 µG E/B \leq 1 (ideal MHD)

AGILE and the Crab Nebula

The Crab Nebula γ -ray flaring spectrum

AGILE and the Crab Nebula

The Crab Nebula γ -ray flaring spectrum

AGILE and the Crab Nebula Recent γ-ray activity

SNRs in gamma-rays

SNRs in gamma-rays

• Strong evidence supporting the hadronic scenario (neutral pion decay)

• No data below 200 MeV ($\rightarrow \pi^0$ "signature": fast steepening spectrum)

- A dominant leptonic contribution is excluded for W44
- Direct proof of π^0 "bump" \rightarrow accelerated hadrons
- "Smoking gun" of CR acceleration process in a Galactic source

γ -ray binaries detected by AGILE

- MICROQUASARS IN THE CYGNUS REGION
 - O CYGNUS X-1
 O CYGNUS X-3
 O V404 CYGNI

• η Carinae: a colliding wind binary

• AGILE Sources Possibly Associated with Binary Systems

THE CYGNUS REGION AS DETECTED BY AGILE (E > 100 MeV)

Microquasar

X-ray binary systems: accreting NS or BH + jets
Variable X-ray emission
Radio emission: variable low-level flux + giant flares (Cyg X-3)
Typically, correlated radio/soft X-ray/hard X-ray emission

Open question (pre-AGILE/Fermi):
Can the jet emit γ-rays above 100 MeV?

Microquasars in the Cygnus region

	Cygnus X-1	Cygnus X-3	V404 Cygni
type	нмхв	НМХВ	LMXB
compact object	BH (4.8-14.8 M_{\odot})	BH or NS (?)	BH (9 M_{\odot})
companion star	09.7 lab (17-31 M_{\odot})	WR (> 7 M_{\odot})	K3 III (0.7 M_{\odot})
distance	1.9 kpc	7-10 kpc	2.39 kpc
orbital period	5.6 days	4.8 hours	6.47 days

Comptonization models: spectral ULs from long-term integration in the γ -ray energy band both for hard and soft states

γ-ray activity discovered in late 2009

AGILE → (Tavani et al, Nature, 2009); Fermi-LAT → (Abdo et al., Science, 2009)

7 γ -ray flares have been detected between November 2007 and July 2009:

- significance $\geq 3\sigma$
- γ -ray fluxes more than 10 times the steady flux [F_{steady} = (14 ± 3) x 10⁻⁸ ph cm⁻² s⁻¹]

Period	MJD	√TS	Flux [10 ⁻⁸ photons cm ⁻² s ⁻¹]
2008 Feb 11 (18:07:28) - 2008 Feb 12 (11:07:44)	54507.76 - 54508.46	3.7	264 ± 104
 2008 Apr 16 (13:59:12) - 2008 Apr 17 (13:48:00)	54572.58 - 54573.58	4.5	265 ± 80
 2008 Nov 2 (13:01:05) - 2008 Nov 3 (19:01:05)	54772.54 - 54773.79	3.1	135 ± 56
 2008 Dec 11 (19:50:40) - 2008 Dec 12 (23:02:40)	54811.83 - 54812.96	4.0	190 ± 65
 2009 Jun 20 (21:04:48) - 2009 Jun 21 (20:53:04)	55002.88 - 55003.87	3.8	193 ± 67
 2009 Jul 13 (01:11:60) - 2009 Jul 14 (00:59:44)	55025.05 - 55026.04	3.2	216 ± 89
 2009 Jul 21 (21:07:12) - 2009 Jul 23 (21:07:12)	55033.88 - 55035.88	3.6	158 ± 59

Multi-wavelength light curve (December 2007 \rightarrow September 2009) + 2.15 GHz (RATAN-600) + 4.8 GHz (RATAN-600) + 11.2 GHz (RATAN-600) • 15 GHz (AMI-LA) radio 10000 Radio Flux Density [mJy] 1000 100 10 RXTE/ASM soft X-rays Int rate (3-5 keV) [counts s⁻¹] 0.08 hard X-rays Swift/BAT Count rate (15-50 keV) [counts cm⁻⁵⁻¹] 0.06 0.04 0.02 0.00 4.10 AGILE-GRID γ-rays 54500 54600 54700 54800 54900 55000 55100 Time [MJD]

Repetitive multi-frequency emission pattern:

STRONG ANTICORRELATION between hard X-ray and γ-ray emission: γ-ray activity associated with sharp/local minima in the hard X-ray light curve (Swift/BAT count rate ≤ 0.02 counts cm⁻² s⁻¹)

Cyanus X-3

- > γ -ray flares coincident with soft spectral states (RXTE/ASM count rate \geq 3 counts s⁻¹)
- > γ -ray flares around hard-to-soft or soft-to-hard spectral transitions
- > γ -ray flares a few days before major radio flares

Piano et al., A&A, 545, A110 (2012)

Cygnus X-3

Repetitive multi-frequency emission pattern:

- STRONG ANTICORRELATION between hard X-ray and γ-ray emission: γ-ray activity associated with sharp/local minima in the hard X-ray light curve (Swift/BAT count rate ≤ 0.02 counts cm⁻² s⁻¹)
- > γ -ray flares coincident with soft spectral states (RXTE/ASM count rate \geq 3 counts s⁻¹)
- > γ -ray flares around hard-to-soft or soft-to-hard spectral transitions
- > γ -ray flares a few days before major radio flares

Piano et al., A&A, 545, A110 (2012)

Cygnus X-3

Repetitive multi-frequency emission pattern:

- **STRONG ANTICORRELATION** between hard X-ray and γ -ray emission: γ -ray activity associated with \triangleright sharp/local minima in the hard X-ray light curve (Swift/BAT count rate ≤ 0.02 counts cm⁻² s⁻¹)
- γ -ray flares coincident with soft spectral states (RXTE/ASM count rate \geq 3 counts s⁻¹)
- γ -ray flares around hard-to-soft or soft-to-hard spectral transitions
- γ -ray flares a few days before major radio flares

Piano et al., A&A, 545, A110 (2012)

Both leptonic and hadronic emission models can account for the γ -ray flaring spectrum detected by AGILE

Recent γ -ray activity $\rightarrow 2016 - 2017$ (Koljonen et al., A&A 612, A27, 2018)

Recent γ -ray activity $\rightarrow 2016 - 2017$ (Koljonen et al., A&A 612, A27, 2018)

Recent γ -ray activity $\rightarrow 2016 - 2017$ (Koljonen et al., A&A 612, A27, 2018)

V404 Cygni

After ~26 years of quiescence \rightarrow active phase in June 2015

High Energy γ -ray flare (50-400 MeV) coincident with outbursts in: radio X-ray soft γ -rays (continuum & 511 keV annihilation line)

AGILE (50-400 MeV) simultaneous with Fermi-LAT (60-400 MeV)

V404 Cygni

Soft emission in HE γ -rays: no detected activity above 400 MeV

Piano et al., ApJ, 839, 84 (2017)

η Carinae

- Luminous Blue Variable + O Star
- Orbital period ~ 5.54 years
- First detection of a Colliding Wind Binary in γ-rays (Tavani et al., ApJ, 698, L142, 2009)
- Shock acceleration mechanism in a wind-wind interaction scenario $(\dot{M}_1 \approx 2 \times 10^{-4} M_{\odot} \text{ yr}^{-1}, \dot{M}_2 \approx 2 \times 10^{-5} M_{\odot} \text{ yr}^{-1}, v_1 \approx 600 \text{ km/s}, v_2 \approx 3000 \text{ km/s})$

AGILE AND GALACTIC GAMMA-RAY SOURCES POSSIBLY ASSOCIATED WITH BINARY SYSTEMS

AGILE source	binary system	binary type	orbital period
1AGL J0242+6111	LS I +61 303	Be + ? (HMXB)	26.5 days
1AGLR J1822-1456	LS 5039	O + \$ (HMXB)	3.9 days
AGL J1734-3310	IGR J17354-3255	SFXT (HMXB)	8.45 days (Sguera et al., 2011)
AGL J2022+3622	IGR J20188+3647	SFXT (HMXB) ?	? (ATel #1313; Sguera et al., 2006)
AGL J1037-5708	4U 1036-56	Be-NS (HMXB)	61.0 days (Cusumano et al., 2013)
AGL J2241+4454	MWC 656	Ве-ВН (НМХВ)	60.37 days (Casares et al., 2014; P. Munar-Adrover et al., 2016)

AGILE AND GALACTIC GAMMA-RAY TRANSIENTS: AGL J2241+4454

- Transient γ -ray activity detected in July 2010 (ATel #2761).
- AGILE detection → discovery of the first Be-HMXB hosting a Black Hole: MWC 656 (Casares et al., 2014 → optical data)

AGL J2241+4454: AGILE OBSERVATIONS

- Blind search in 2-day bin lightcurve (Pointing and Spinning)
- 10 flaring events observed by AGILE between 2007 and 2013

AGILE GAMMA-RAY TRANSIENT DETECTIONS AROUND THE POSITION OF MWC 656.

$\begin{bmatrix} t_{start} \\ [UT] \end{bmatrix}$	${f t}_{end} \ [UT]$	Flux $[\times 10^{-6} \text{ cm}^{-2} \text{ s}^{-1}]$	\sqrt{TS}
2007-11-23 UT00:00:00	2007-11-24 UT00:00:00	1.5 ± 0.5	4.5
2008-06-28 UT00:00:00	2008-06-30 UT00:00:00	0.6 ± 0.3	3.2
2009-01-04 UT00:00:00	2009-01-07 UT00:00:00	0.5 ± 0.2	3.1
2010-06-13 UT00:00:00	2010-06-14 UT00:00:00	1.4 ± 1.1	3.2
2010-06-30 UT00:00:00	2010-07-02 UT00:00:00	1.3 ± 0.6	3.1
2010-07-25 UT00:00:00	2010-07-27 UT00:00:00	1.4 ± 0.6	5.3
2011-04-09 UT00:00:00	2011-04-11 UT00:00:00	2.2 ± 1.1	3.1
2011-10-08 UT00:00:00	2011-10-10 UT00:00:00	2.5 ± 1.1	3.4
2013-03-07 UT00:00:00	2013-03-08 UT09:00:00	2.6 ± 1.4	3.1
2013-07-10 UT00:00:00	2013-07-12 UT00:00:00	3.2 ± 1.6	3.5

Munar-Adrover et al., ApJ, 829, 101 (2016)

AGL J2241+4454: AGILE OBSERVATIONS

• Searching for periodic γ -ray emission

Folding data with 60.37 day period

Munar-Adrover et al., ApJ, 829, 101 (2016)

NOVAE DETECTED IN GAMMA RAYS

	Active phase	Fermi-LAT [photons cm ⁻² s ⁻¹]	AGILE [photons cm ⁻² s ⁻¹]
V679 Car 2008	December 2008 – January 2009	(1.9 ± 0.5) 10 ⁻⁷	Outside the FoV
V407 Cyg 2010	March 2010	(3.47 ± 0.44) 10 ⁻⁷	UL = 7.7 10 ⁻⁷
V1324 Sco 2012	June-July 2012	(4.40 ± 0.85) 10 ⁻⁷	Outside the FoV
V959 Mon 2012	June-July 2012	(2.64 ± 0.45) 10 ⁻⁷	Outside the FoV
V339 Del 2013	August-September 2013	(1.45 ± 0.19) 10 ⁻⁷	Outside the FoV
V1369 Cen 2013	December 2013 – January 2014	(2.51 ± 0.52) 10 ⁻⁷	UL = 3.7 10 ⁻⁷
V745 Sco 2014	February 2014	(3 ± 1) 10 ⁻⁷	Outside the FoV
V1535 Sco 2015	February 2015	(1.0 ± 0.3) 10 ⁻⁷	Outside the FoV
V5668 Sgr 2015	March-May 2015	(0.61 ± 0.13) 10 ⁻⁷	UL = 3.1 10 ⁻⁷
V407 Lup 2016	September 2016	(1.8 ± 0.6) 10 ⁻⁷	UL = 2.3 10 ⁻⁶
V5855 Sgr 2016	October-November 2016	(2.6 ± 0.7) 10 ⁻⁷	Outside the FoV
V5856 Sgr 2016	November 2016	(6.1 ± 0.5) 10 ⁻⁷	UL = 1.5 10 ⁻⁶
V549 Vel 2017	October-November 2017	(8.0 ± 3.5) 10 ⁻⁸	UL = 1.9 10 ⁻⁷
Nova Mus 2018	January 2018	2.4 10 ⁻⁷	UL = 1.7 10 ⁻⁶
ASASSN-18fv	April-May 2018	(3.6 ± 0.3) 10 ⁻⁶	(3.0 ± 0.9) 10 ⁻⁶
V392 Per 2018	April-May 2018	(3.47 ± 0.44) 10 ⁻⁷	Outside the FoV

NOVA ASASSN-18FV

$$\sqrt{TS} = 4.5$$

Flux = (3.0 ± 0.9) 10⁻⁶ ph/cm²/s

Novae: new class of gamma-ray binary sources

(See Domitilla's talk)

