Novae: a new class of high energy emitters

D. de Martino INAF – OA Capodimonte Naples

> GK Per Nova Per 1901

Outline

Introduction:

- Novae Classification & System Properties
- Importance in Chemical enrichment & Distance Indicators

Panchromatic View:

- Optical/nIR light curves & spectra
- X-ray emission
- Radio emission

Novae as sources of particle acceleration:

- FERMI LAT Discoveries
- Gamma-ray light curves
- Gamma-ray spectra
- Future developments

<u>Novae</u>

Classical & Recurrent Novae

Classical Novae (CNe):

- One observed outburst
- <u>Recurrence timescales: 10³ 10⁵ yr</u>
- Donors: late-type MS or Giant
 P_{orb} ~ 1.1h -5d
- CO WDs:enhanced CNO ejecta -H/He solar
 ONe WDs: enhanced O,Ne C depletion
- <u>Range of WD Mass: 0.5 1.3 M_o</u>
- Accretion rate quie.: $\dot{M} \sim 10^{-11} 10^{-9} M_{\odot}/yr$
- $L_{\text{peak}} \sim \text{few 10}^4 L_{\odot}$
- Speed classes: Very fast-to-slow
 V_{eject} ~ few 10² few 10³ km/s
 Fell &He/N spectra associated to speed
- $M_{eject} \sim 10^{-5} 10^{-4} M_{\odot}$

Recurrent Novae (RNe):

- > 1 recorded outburst
- Recurrence timescale : 20- 80yr
- Donors: K-M V (T Pyx) $P_{orb} < 1d$ (3) K IV (U Sco) $P_{orb} \sim 1.5d$ (3) M III (RS Oph) $P_{orb} \sim 200-500d$ (4) Mira (V407 Cyg) $P_{orb} \sim 43yrs$ (1)
- <u>High mass WDs: 1.0 1.2 M_o</u>
- Accretion rate quie.: $\dot{M} \sim 10^{-8} 10^{-7} M_{\odot}/yr$
- $L_{peak} \sim up \text{ to } 10^5 \text{ L}_{\odot}$
- Speed Classes: Very fast-to-slow SyRNe: fast V_{eject}>10³km/s U Sco: very fast V_{eject} ~ 10⁴ km/s T Pyx: slow V_{eject}~ few 10² – 3x10³ km/s

• <u>M_{eject} ~ 10⁻⁶-10⁻⁵M_o</u>

Nova Light curve diversity:

Morphology:

- Large amplitude (ΔV≈11-15mag)
- Variable length (rise and decay)
- t₂ defines Speed Class: Fast & Slow
- Diversity starting 3-4mag below V_{max}.:
- Smooth decline: Fast Novae ≥0.1mag/d
- Oscillations (1-1.5mag) Quasi-period days
- Dips (7-10mag): onset of dust (nIR increases)

Strope et al. 2010

Nova as distance indicators

 Magnitude Max vs Rate of Decline (MMRD) in Galaxy, M31, LMC & Virgo (della Valle & Livio 1995) :

$$M_{V,max} = -7.92 - 0.81 \text{ x tan}^{-1} [(1.32 - \log_{10} t_2)/0.23]$$

Optical/nIR Spectral evolution

(Williams 2012, Shafter et al. 2011; Shore et al. 2011, Anupama 2011, 2012)

<u>Spectral evolution</u> Complexities in ejecta

Novae Explosion

• Novae Energetics:

L ≈ 2-4x10⁴ − 5x10⁵ L_☉ ≥ L_{Edd} [L_{Edd} ≈ 1.2x10³⁸ (M/M_☉) erg/s] $M_{eject} \approx 10^{-6} - 10^{-4} M_{\odot}$ → radiation pressure as driving force Energy ≈ 10⁴⁵ erg over t ≤ 10⁸ s Veject ≈ few 100 − 3000 km/s Produced by thermonuclear Runaway on WD surface

(Kraft 1963, Giannone & Wigert 1967; Starrfield 1971, 1976; Gallagher&Starrfield 1978)

M_{eject} 10 max 3D MHD simulation to test 10, Ledo [10⁴ Lo] ٠ 4 [°₩]⁽⁶ш(parameter space with observables : 0.65 0.65 Log dM/dt [M_yr -12 Log dM/dt [M_ yr1 MWD [M] M_{WD} [M_o] V_{max} M_{acc} , T_{WD} , M_{WD} t₃ 400 (,sux) 2000 t_{3,bol} [days] 60 (Yaron et al. 2005) 0.65 0.65 Log dM/dt [M_yr⁻¹] -12 M_{WD} [M_o] Log dM/dt [M_ yr⁻¹] -12 M_{WD} [M₀]

Novae Explosions

- Importance of nucleosynthesis:
- Novae not major contributors to ISM abundances but important contributors of isotopes:

- CO and ONe WDs: overabundances of : ⁷Li, ²²Na, ²⁶Al

Lifetime	Main disintegration	Type of emission	Nova type
	process		• •
¹³ N 862 s	β^+ -decay	511 keV line and	CO and ONe
		continuum	
¹⁸ F 158 min	β^+ -decay	511 keV line and	CO and ONe
		continuum	
77 days	<i>e</i> ⁻ -capture	478 keV line	CO
3.75 years	β^+ -decay	1275 and 511 keV lines	ONe
10 ⁶ years	β^+ -decay	1809 and 511 keV lines	ONe
	862 s 158 min 77 days 3.75 years 10 ⁶ years	$\frac{\beta^{+}-\text{decay}}{\beta^{+}-\text{decay}}$ $\frac{158 \text{ min } \beta^{+}-\text{decay}}{\beta^{+}-\text{decay}}$ $\frac{77 \text{ days } e^{-}-\text{capture}}{\beta^{+}-\text{decay}}$ $\frac{3.75 \text{ years } \beta^{+}-\text{decay}}{\beta^{+}-\text{decay}}$	IntermeIntermet district gradientType of classionprocess β^+ -decay511 keV line and continuum158 min β^+ -decay511 keV line and continuum77 days e^- -capture478 keV line3.75 years β^+ -decay1275 and 511 keV lines106 years β^+ -decay1809 and 511 keV lines

Test with observations: No γ-ray detection but ⁷Be optical lines

(Izzo et al. 2015, 2018)

Need high sensitivity

• <u>X-ray emission</u>:

Since EXOSAT and ROSAT novae detected as strong soft X-ray sources

Soft X-rays appear several days after optical maximum:

(Super-Soft X-ray Source – SSS)

 $L_{soft} \approx 10^{37-38} \text{ erg/s} \approx L_{EDD}$ kT $\approx 30-80 \text{ eV}$

(Orio et al. 2001, 2004; Krautter 2008)

- X-ray emission:
 - 3 separate X-ray phases
- Early hard X-ray phase (few to tens days):: Ejected material absorbes X-rays & UV Expansion at L_{bol}≈const

X-rays are hard

- Later SSS phase:
- Ejected material becomes optically thin Photosphere expands until nuclear burning decreases envelope mass

X-rays are son Photosphere shrinks & Temperature rises

- SSS decline:

Fast Soft X-ray decline $t^{-\alpha} \alpha = 3.1$ Slow Hard decline $t^{-\alpha} \alpha = 0.8$ at pre-nova levels

- <u>X-ray emission</u>:
 - 3 separate X-ray phases
- Early hard X-ray phase (few to tens days):
 Ejected material absorbes X-rays & UV
 Expansion at L_{bol}≈const
 X-rays are hard
- Later SSS phase:

Ejected material becomes optically thin Photosphere expands until nuclear burning decreases envelope mass X-rays are soft

Photosphere shrinks & Temperature rises

- SSS decline: Fast Soft X-ray decline $t^{-\alpha} \alpha = 3.1$ Slow Hard decline $t^{-\alpha} \alpha = 0.8$ at pre-nova level

- Requirement for 2 components:
 Opt. Thick + Opt. Thin
- Soft Opt.thick component:
 The SSS allows to determine Teff, log g, abund:
- Strong absorption edges and broad lines of elements with different abundances
- velocity blue-shifts up to -3200km/s

39.93

40.03

dav 49.62

ph cm⁻² ksec⁻¹ Å⁻¹

80

60

40

20

15

Obs1

Obs2

20

- BB overestimates Luminosity by a factor >10

25

λ (Å)

30

 $T_{\rm RR} = 5.9 \times 10^5 \, \text{K}$

 $T_{\rm BR} = 6.3 \times 10^5 \, \rm k$

 $T_{ee} = 6.3 \times 10^5 \text{ K}$

 $n = 8.0 \times 10^{2}$

V2491 Cyg – Nova Cyg 2008 XMM-Newton/RGS

- 2) Hard Opt.thin component:
- Optically thin thermal emission: $Lx \approx 10^{32}-10^{-36} \text{ erg/s}$ in many novae
- Hard X-rays slowly decrease: -
- Temperatures decrease from 10-20keV to \approx 1keV (Mukai et al. 2008)
- Absorbing column decreases as the ejecta expands in most cases

 \rightarrow Shocks within ejecta in CNe or with the Giant/Mira wind in SyNe

Asymmetric ejecta

- Ejecta are complex and asymmetric: bipolar outflow
- Asymmetric ejection of SyRN RS Oph 2006 outburst: a dumbbell structure
- Thermal radio emission at centre non-thermal at lobes

The surprising Y-ray detection (> 100 MeV) from Fermi-LAT:

Novae as new class of Y-ray sources

- Ackermann et al. 2014 Cheung et al. 2016 Finzell et al. 2018 Franckowiak et al. 2018 + ATels 2016-2018
- 2008-2018: FERMI-LAT decteced 14 Novae + 2 Candidates (3 σ):

13 Classical Novae, 2 SyRNe, 1 Symbiotic Nova

- Archival Compton/OSSE searches: CN V382 Vel (Nova Vel 1999) @ 0.1MeV

- Aug. 2008-Apr. 2018: 103 "well" sampled Galactic Novae (AAVSO !!)
- Most concentrated in the Galactic Plane and Bulge
- Fermi-LAT Galactic Novae: detected **14 + 2** candidates

• Fermi-LAT novae are optically bright

• High γ -ray flux : > 0.8 x 10⁻⁷ ph/cm2/s

• No correlation between optical and Y-ray brightness

- Distance plays a role: most within 5kpc but not all detected
- Low Υ-ray Luminosities: <10³⁷ erg/s

• 5 Novae out of 16 are fast (t2 \leq 13days)

Similarities in Y-ray light curves despite being CN or Symbiotic:

- Rise and Fall times similar : ~ 2-7 days
- Duration: 17-30 days
- Broad peak reaching 1-2 x 10⁻⁶ ph/cm2/s in a few novae
- Total energy: 6-13 x 10⁴¹ erg

Ackermann et al. 2014 Cheung et al. 2016

Optical & γ-ray light curves:

• Y-ray &. Optical maxima:

sometimes coincident but often lag (few days up to 30days)

 Delay: travel time in CNe ~ 1hr in Symb > 5 days

-> later shocks within ejecta

Ackermann et al. 2014

-> shocks in Mira's wind

Clues from Recent Classical Novae

V5856 Sgr – Nova Sgr. 2016 N.4 :

- Y-ray peak at optical maximum
- Y-ray and optical dips almost coincident
- No X-ray detection by Swift/XRT @ opt. Max
- Fast nova : t2 ≈ 10days but still bright (≈ 12.5mag) in 2018
- Pre-Nova counterpart from GAIA DR2 : quiescence (≈ 20mag) no parallax

Clues from Recent Classical Novae

Nova Mus 2018 :

- Υ-ray peak at optical maximum
- No X-ray detection by Swift/XRT in the first week
- X-rays increase after 20days up F_(0.3-10keV) ≈ 6x10⁻¹² erg/cm2/s
- Radio detection at t > 20days slowly fading
- nIR coverage : dust develops at later times coincident with X-ray maximum

Clues from Recent Classical Novae

Nova Car 2018 – aka ASASSN-18fv:

- Y-ray peak at late stage of optical maximum detected by Fermi and AGILE
- NuSTAR: heavily absorbed opt. thin (kT ~ 8keV) at $F_{(3-78keV)} \sim 3x10^{-12}$ cgs
- No radio detection @9 or 5.5GHz on Day 3 from maximum
- Pre-Nova from GAIA DR2 : V~18.9 uncertain parallax d~ 3.3 kpc
- Slow-Nova: t2 > 48days

Similarities of Y-ray spectra:

Ackermann et al. 2014 Cheung et al. 2016 Franckwoiak et al. 2018

--- Power Law: N(E) $\approx E^{-\Gamma} \Gamma \approx 2.0 - 2.3$

or

--- Exp. Cutoff Power Law: $N(E) \approx E^{-s} e^{-E/Ec}$

s = 1.7 - 1.8; $E_c \approx 1 - 4 \text{ GeV}$

Similarities in Y-ray spectra:

 Interaction of accelerated protons or electrons within ejecta but origin and production site is still an open problem

Hadronic scenario: pp collisions $\rightarrow \pi^{\circ} \rightarrow 2Y$ B> 10⁻³ G to accelerate protons

indistinguishable

Leptonic scenario: IC scattering of electrons with low-energy photons from the nova

Cheung et al. 2016

Similarities in Y-ray spectra:

 Interaction of accelerated protons or electrons within ejecta but origin and production site is still an open problem

<u>Summary</u>

- Although discovered more than 3500yrs ago Novae still give surprises !
- Novae emit at all energies: from radio to y-rays → Panchromatic studies
- 16 detected Novae by Fermi \rightarrow a new class of γ -ray emitters
- Particle acceleration origin and production site still an open problem : Shocks in ejecta/companion wind - hadronic or leptonic scenarios
- Hard X-ray and soft γ-ray coverage with sensitive instruments !