Laboratory reconnections between plasma Jets and Tori: the PROTO-SPHERA Experiment

Franco Alladio, CR-ENEA Frascati

Outline

- PROTO-SPHERA has achieved the full Phase-1 current (10 kA) of Plasma Centerpost
- Surprise: the experiment now produces routinely Argon & Hydrogen Toroids
- DC voltage on Centerpost electrodes drives Toroidal Current (magnetic reconnections)
- In 2019: an intermediate Phase-1¹/₂ for moving to Phase-2 on sound bases
- End of 2021: Phase-2 experiment ready to produce plasma

A poloidal B_{\perp} magnetic field is required to contrast particle drifts \rightarrow toroidal current has to flow in an axisymmetric plasma

Magnetic confinement basics at work!

Switch-off of PROTO-SPHERA discharges containing a torus:

the brightness of the torus is the last to vanish, both in the full spectrum of visible light

#1224, 10 kA Hydrogen

#1219, 10 kA Hydrogen

as well as observed trough a Balmer-alpha filter

Tokamaks (1953)

Igor Yevgenyevich Tamm (1895-1971) Dmitri Ivanovich Sakharov (1921-1989)

- The toroidal component of the magnetic field is produced by coils wound around the plasma torus
- The central solenoid induces the plasma current (break-down) and heats the plasma torus

(ohmic heating,

through plasma resistivity)

Other poloidal field coils control the radial position of the plasma torus

Tokamak drive: AC currents, induction

Plasma confining current inside Torus:

induced and sustained by a transformer

whose current varies in time ...but there are limits: the transformer will break beyond a given current limit...

- The <u>plasma ohmic drive in a Tokamak:</u> moving closed flux surfaces, "feeding" the plasma from outside, they are dissipated while they move toward the magnetic axis
- In tokamaks this process is due to the transformer current change:
- Tokamaks cannot have steady drive!

toroidal field magnets

The main idea of PROTO-SPHERA

 "Conventional Tokamak": magnetic surfaces of toroidal plasma surround a "Metal Centerpost"

Toroidal geometry of Vacuum vessel

• PROTO-SPHERA: magnetic surfaces of toroidal plasma surround a "Plasma Centerpost"; slim metal external legs return the current

Cylindrical geometry of Vacuum vessel

...but electrodes required inside vessel

Cylindrical vacuum vessel geometry has obvious advantages!

← easy to access & and to repair...

SUSTAINMENT OF TOROIDAL CURRENT BY RECONNECTIONS OBTAINED in 2018 & IS FOREVER!

Reconnections of Jets and Tori a common occurrence in Nature!

Hydrodynamics examples

Plasma examples: Solar Flares Magnetic Reconnections, Coronal Heating

PROTO-SPHERA (max 1 s plasma) aim was: sustain Torus for 1 resistive time ~ 70 ms

PROTO-SPHERA has already sustained a low current torus (5 kA) for ½ sec

The two Phases of PROTO-SPHERA

In 2002 at Frascati an International Workshop advised to build the machine in 2 steps:

- Phase-1: demonstrate Plasma Centerpost's (fear of anode arc anchoring...)
- Phase-2: machine completed such as to produce the Spherical Torus

Ideal MHD stability of PROTO-SPHERA

Spheromak tilt instability is due to dipole of containing field opposite to toroidal plasma current dipole

"Group A" PF coils (compression coils) dipole moment opposes Plasma dipole but "Group B" PF coils (shaping coils) dipole moment is aligned to Plasma dipole

DISK-SHAPED ELECTRODE-FACING PLASMA GUARANTEES IDEAL MHD STABILITY

Cutting shorter & shorter the plasma centerpost PROTO-SPHERA at 120 kA of toroidal current in ST gets destabilized; in absence of cutting stability extends to 240 kA of toroidal current in ST

Low voltage (100-350 V) between electrodes

at high-field tokamak plasma density ~ few • 10²⁰ m⁻³

PROTO-SPHERA Electrodes

Down: 3000^o K heated cathode Phase-1 (present) cathode (54 = 18 x 3 W emitters): aim 10 kA

Phase-2 cathode, 6 x Phase-1 (324 = 108 x 3 W emitters): aim 60 kA

"Caduceus"-like W emitting spirals have now survived > 1500 cycles

A SPACE-THRUSTER forerunner?

abandon vacuum vessel toroidal geometry, move to cylindrical one ... → natural expulsion of charged fusion products (Space Thruster)

Due to filamentary nature of B field a fundamental mathematical difference appears:

a hairy torus can be combed

a hairy sphere cannot!

From one of the "*tufts*" of the sphere (...not combed) very high velocity (~ MeV) charged fusion products emerge

Possible future application as a Space Fusion Thruster...

PROTO-SPHERA Plasma Centerpost rotates & therefore avoids anode arc-anchoring

#614, 8.5 kA Argon break-down V_e ~ 90 V, steady V_e ~ 200 V

Anode arc-anchoring means that a plasma arc discharge is localized on an anode spot

Plasma rotation in Tokamaks always stabilizes the plasma

best way of injecting fuel is from inboard (high field side)

#977, 10 kA Hydrogen break-down V_e ~ 320 V, steady V_e ~ 220 V

(*Pisa University & its PlasmaTech spin-off*) line-averaged electron density on plasma equator: in Argon Centerpost $< n_e > ~ l_e$ in Hydrogen Centerpost at $l_e = 10 \text{ kA}$, $< n_e > ~ 4 \cdot 10^{20} \text{ m}^{-3}$ at $l_e = 10 \text{ kA}$, $< n_e > ~ 1.5 \cdot 10^{20} \text{ m}^{-3}$

No Anode-Arc Anchoring: Electrostatic plasma effects! $\vec{E} \wedge \vec{B}$ plasma rotation does the trick!

Lines: magnetic field

Color contours: electrostatic potential, Arrows: E field

Insulating & transparent vessel being built for Phase-2

will substitute the Aluminum vacuum vessel with a Polymetacrylate (PMMA) transparent and insulating vessel (9.5 cm thick, $2m \otimes$, 1.7 m high), endowed with 20 ports adding 2 further SS rings on top & bottom of the experiment,

keeping all internal components attached to the existing SS upper\lower lid and extension

"Magnetic Boundary Conditions" changed

4 external PF coils added ...fed in series with the internal PFInt coils, from April 2018 a further Super-Capacitor power supply feeds some of the PFExt coils

Hydrogen Centerpost at full current =10 kA seemed quite inclined to eject a Torus ...an added vertical field ...was used as midwife!

#983, 10 kA Hydrogen

Plasma fired after 0.75 s of PF current to allow for skin current diffusion in Al vessel

4 external PFExt (each 16 wires 25 mm²)

March 2018 Torus formed in Argon plasmas

I_{Torus}= 5 kA

The "gentle Divertor" of the (barely visible) Argon Torus

lower Divertor fan is dominant & slightly shifts down the Torus

#1149, Argon

The Argon Torus has been sustained for up to ½ sec

Argon Torus break-down $V_e \sim 200 V$ steady $V_e \sim 220 V$

#1160, Argon, X-points fit I_{st}=5 kA

April 2018 Torus formed in Hydrogen Plasma

evident at plasma breakdown

Hydrogen Torus break-down V_e ~ 360 V steady V_e ~ 320 V

#1202, Hydrogen
& ...after ¼ sec

at plasma switch-off

The "uncouth Divertor" of the Hydrogen Torus

The present divertor plate is the lower polycarbonate diaphragm: an unsuitable choice of material!

But when we put it inside PROTO-SPHERA we did not expect to be able to form a Torus!

A new lower metal diaphragm being built now; in 2019 PROTO-SPHERA will have 2 suitable plates

#1202, Hydrogen

Reconnections, Helical States & Double Tori

#1225

Vertical field in eccess? ...Double Torus!

... or Helical States ... or lop-sided Tori!

The only occurrence you should never ever consider is plasma disruption: gone for good!

PROTO-SPHERA will not need additional heating...?

...magnetic reconnections heat the Solar Corona!

~ 0 MW, T = 10 eV

"cold" plasma:

divertor studies

Phase-2 power injected into plasma > 250 V • 60 kA = 15 MW ...how much into Torus?

< 1 MW, T = 100 eV "lukewarm"plasma: magnetic reconnection studies at S ~ 10⁴

Fritz Lang's Metropolis (1926)

a few MW, T = 1 keV, "hot" plasma at $\beta \sim 1$, no disruptions no additional heating & no current drive required, same T as a Tokamak, but 1/100 of the cost!

Crab Nebula remnant

Major surprise: Torus forms in a static field

Plasma operations will be easier in Phase-2, which will produce Spherical Tori with I_{ST} = $\frac{1}{4}$ MA

Perspectives

PROTO-SPHERA will assess a new magnetic confinement configuration:

- simply connected (easy to build, maintain & modify)
- sustained (indefinitely) by magnetic reconnections induced by DC voltage
- mixed magnetic & electrostatic confinement, plasma flow being paramount
- could provide laboratory examples and insight into cosmic reconnection phenomena
- (if high T from magnetic reconnections) plasma $\beta \sim 1$: small size future Fusion reactor?
- a forerunner for a (far future) Fusion Space Thruster?

