Point sources sensitivity

CTA and a new Wide FoV observatory

A future Wide FoV Observatory to be useful to CTA needs:

- $<10 \%$ Crab sensitivity below TeV
- Low energy threshold ($\approx 100 \mathrm{GeV}$)
- Ability to detect extragalactic transient (AGN, GRBs)
- Southern hemisphere site
\star Is this possible?

Minimum Detectable Gamma-Ray Flux (1 year):

$$
\Phi_{\gamma}^{M D F} \propto \sqrt{\Phi_{B}} \cdot \frac{1}{R \cdot \sqrt{A_{e f f}^{\gamma}}} \cdot \psi_{70} \cdot \frac{1}{Q_{f}}
$$

$$
\begin{aligned}
& \Phi_{B}=\text { background flux } \\
& \psi_{70}=\text { opening angle }
\end{aligned}
$$

$$
A_{e f f}^{\gamma, p}(E)=\text { effective area }
$$

$$
R=\sqrt{\frac{A_{e f f}^{\gamma}(E)}{A_{e f f}^{B}}(E)}
$$

$$
Q_{f}=\frac{\text { fraction of surviving photons }}{\sqrt{\text { fraction of surviving hadrons }}}
$$

The key parameters

$$
S \propto \frac{\Phi_{\gamma}}{\sqrt{\Phi_{b k g}}} \cdot R \cdot \sqrt{A_{e f f}^{\gamma}} \cdot \frac{1}{\sigma_{\theta}} \cdot Q
$$

Because for the integral fluxes we can write we obtain $\frac{\Phi_{\gamma}}{\sqrt{\Phi_{b k g}}} \sim E_{t h r}^{-\left(\gamma-\gamma_{b k g} / 2\right)} \sim E_{t h r}^{-2 / 3}$

$$
\Phi_{\gamma} \sim E_{t h r}^{-\gamma}
$$

$$
\Phi_{b k g} \sim E_{t h r}^{-\gamma_{b k g}}
$$

being $\gamma \sim 1.5$ and $\gamma_{b k g} \sim 1.7$.
The key parameters to improve the sensitivity are

- The energy threshold
- R , the signal/background relative trigger efficiency
- The angular resolution
- Q-factor, the background rejection capability

Lowering the energy threshold: extreme altitude

Trigger probability of a detector larger for γ showers than for p-showers at extreme altitude.

Lowering the energy threshold:

- Extreme altitude ($\approx 5000 \mathrm{~m}$ asl)
- Detector and layout
- Coverage and granularity of the read-out
- Trigger logic
- Detection of secondary photons

ARGO-YBJ energy distributions

Figure 3. Normalized distribution of the primary gamma-ray energy for different $N_{\text {pad }}$ intervals, for a Crab-like source.

Median energy first bin $=360 \mathrm{GeV}$

Topology-based Trigger logic: >20 pads out of 15,000 bkg free!

Shower detection

Fired pads on the carpet

Arrival time vs position

Small and compact events

Detector stability at different energies

Stability of angular resolution and pointing accuracy (TeV)

Distribution of particles hitting a cluster (GeV)

Stability of CR flux measurement
$\mathrm{p}+\mathrm{He}$ spectrum ($3-300 \mathrm{TeV}$)

2010

year	Energy $[G e V]$ Gamma
2008	2.61 ± 0.02
2009	2.61 ± 0.02
2010	2.61 ± 0.02
2011	2.62 ± 0.02
2012	2.63 ± 0.02

flux difference at 5% level

Intrinsic Trigger Rate stability 0.5\% (after corrections for T/p effects)

Azimuthal distribution EAS > 80 deg

Azimuthal distribution EAS > 80 deg

ARGO-YBJ milestones

- In data taking since July 2004 (with increasing portions of the detector)
- Commissioning of the central carpet in June 2006
- Stable data taking full apparatus since November 2007
- End/Stop data taking: February 2013
- Average duty cycle $\sim 87 \%$
- Trigger rate $\sim 3.5 \mathrm{kHz} @ 20$ pad threshold
- N. recorded events: $\approx 5 \cdot 10^{11}$ from 100 GeV to 10 PeV
- 100 TB/year data

Intrinsic Trigger Rate stability 0.5\%
(after corrections for T/p effects)

Secondary photons

gamma rays dominate the particles on ground ($\approx 7: 1$ for $100 \mathrm{GeV} \gamma$-showers at 4300 m asl)

In γ-showers the ratio $\mathrm{N} \gamma / \mathrm{Nch}$ decreases if the comparison is restricted to a small area around the shower core. For instance, we get $\mathrm{N} \gamma / \mathrm{Nch} \approx 3.5$ at a distance $r<50 \mathrm{~m}$ from the core for 100 GeV showers.

The number of secondary photons in γ-showers exceeds the number of gammas in p -showers with increasing altitude.

Detection of secondary photons very important to lower the energy threshold and to improve the angular resolution

Extensive Air Shower Array

Large number of detectors spread over an area of order $10^{5} \mathrm{~m}^{2}$

scintillators, water tanks (Cherenkov light in water), hadron calorimeters, Cherenkov telescopes, emulsions, etc.

Disc of particles sweeps down through atmosphere

Detectors fire in sequence as shower front hits
coverage factor (sensitive area/instrumented area) $\approx 10^{-3}-10^{-2}$
"density sampling" + "fast timing"

ARGO-YBJ: a full coverage detector

ARGO-YBJ is a high altitude full coverage EAS-array optimized for the detection of small size air showers.

ARGO-YBJ central carpet

a continuous carpet of detectors
coverage factor ≈ 0.92
sparse array

coverage factor $\approx 10^{-3}-10^{-2}$

ARGO-YBJ: a full coverage detector

ARGO-YBJ is a high altitude full coverage EAS-array optimized for the detection of small size air showers.

ARGO-YBJ central carpet

a continuous carpet of detectors coverage factor ≈ 0.92
sparse array

coverage factor $\approx 10^{-3}-10^{-2}$

ARGO-YBJ: a full coverage detector

ARGO-YBJ is a high altitude full coverage EAS-array optimized for the detection of small size air showers.

ARGO-YBJ central carpet

a continuous carpet of detectors coverage factor ≈ 0.92
sparse array

coverage factor $\approx 10^{-3}-10^{-2}$

ARGO-YBJ: a full coverage detector

ARGO-YBJ is a high altitude full coverage EAS-array optimized for the detection of small size air showers.

ARGO-YBJ central carpet

a continuous carpet of detectors coverage factor ≈ 0.92
sparse array

coverage factor $\approx 10^{-3}-10^{-2}$

G. Di Sciascio

AGILE Meeting, May 18, 2018

Increasing the sampling ($\sim 1 \% \rightarrow 100 \%$)

- Improves angular resolution
- Lowers energy threshold

The ARGO-YBJ experiment

ARGO-YBJ is a telescope optimized for the detection of small size air showers

INFN IHEP/CAS

Longitude: $90^{\circ} 31^{\prime} 50^{\prime \prime}$ East Latitude: $30^{\circ} 06^{\prime} 38^{\prime \prime}$ North

90 km North from Lhasa (Tibet)
4300 m above sea level $\sim 600 \mathrm{~g} / \mathrm{cm}^{2}$

The ARGO-YBJ layout

Single layer of Resistive Plate Chambers (RPCs) with a full coverage (92% active surface) of a large area ($5600 \mathrm{~m}^{2}$) + sampling guard ring ($6700 \mathrm{~m}^{2}$ in total)

The experimental hall

The basic concepts

...for an unconventional air shower detector
HIGH ALTITUDE SITE
(YBJ - Tibet 4300 m asl $-600 \mathrm{~g} / \mathrm{cm} 2$)
FULL COVERAGE
(RPC technology, 92\% covering factor)
HIGH SEGMENTATION OF THE READOUT
(small space-time pixels)
Space pixels: 146,880 strips ($7 \times 62 \mathrm{~cm}^{2}$)
Time pixels: 18,360 pads ($56 \times 62 \mathrm{~cm}^{2}$)
... in order to

- image the shower front with unprecedented details
- get an energy threshold of a few hundreds of GeV

The daily temperature in the ARGO hall

- The data sample for each year

Year	$\mathrm{T}>10^{\circ} \mathrm{C}$	days	$\mathrm{T}<\mathbf{1 0}^{\circ} \mathrm{C}$	days
2008	$36-366$	331	$1^{\sim 35}$	35
2009	$1-365$	365	0	0
2010	$50-336$	287	$1^{\sim} \sim 49,337^{\sim} 365$	78
2011	$82-316$	235	$1^{\sim} 81,317^{\sim 365}$	130
2012	$78-356$	279	$1^{\sim 77}, 356^{\sim} 366$	87

Energy threshold

Figure 3. Normalized distribution of the primary gamma-ray energy for different $N_{\text {pad }}$ intervals, for a Crab-like source.
full coverage RPC carpet operated at 4300 m as coverage $\approx 92 \%$
high granularity

$$
\mathrm{E}_{50} \approx 360 \mathrm{GeV}
$$

HAWC (2017)

Figure 2. Fits to the true energy distribution of photons from a source with a spectrum of the form $E^{-2.63}$ at a declination of $+20^{\circ} \mathrm{N}$ for \mathcal{B} between 1 and 9 , summed across a transit of the source. Better energy resolution and dynamic range can be achieved with a more sophisticated variable that takes into account the zenith angle of events and the total light level on the ground. The curves have been scaled to the same vertical height for display.
array of water tanks operated at 4100 m as coverage $\approx 60 \%$

$$
\mathrm{E}_{50} \approx 700 \mathrm{GeV}
$$

$$
(p+H e) \text { spectrum }(2-700) \mathrm{TeV}
$$

Calibration of the energy scale

ARGO-YBJ: Moon shadow tool

The energy scale uncertainty is estimated at 10% level in the energy range $1-30(\mathrm{TeV} / \mathrm{Z})$.

The RPC charge readout

...extending the dynamical range up to 10 PeV

4 different gain scales used to cover a wide range in particle density:
$\rho_{\text {max-strip }} \approx 20$ particles $/ \mathrm{m}^{2}$
$\rho_{\text {max-analog }} \approx 10{ }^{4}$ particles $/ \mathrm{m}^{2}$

$$
\left(6.7 \times 62 \mathrm{~cm}^{2}\right)
$$

\#146880

Intrinsic linearity: test at the BTF facility

Linearity of the RPC @ BTF in INFN Frascati Lab:

- electrons (or positrons)
- $E=25-750 \mathrm{MeV}$ (0.5% resolution)
- <N>=1〒10²particles/pulse
- 10 ns pulses, 1-49 Hz
- beam spot uniform on $3 \times 5 \mathrm{~cm}$

Good overlap between 4 scales with the maximum density of the showers spanning over three decades

Astrop. Phys. 67 (2015) 47

The RPC signal vs the calorimeter signal

The RPC charge readout: the core region

Strip read-out

Charge read-out

Strip read-out

Charge read-out

Data

Charge read-out
AGILE Meeting, May 18, 2018

The RPC charge readout: the core region

Strip rea Shower Core $=$ study of hadronic interactions

Data

Charge read-out

Southern Hemisphere: LATTES

arXiv:1607.03051

P. Assis, U. Barres de Almeida, A. Blanco, R. Conceicao, B. D'Ettorre Piazzoli, A. De Angelis,
M. Doro, P. Fonte, L. Lopes, G. Matthiae, M. Pimenta, R. Shellard, B. Tome'

An array of hybrid detectors constituted by

1. one Water Cherenkov Detector (WCD) with a rectangular horizontal surface of $3 \mathrm{~m} \times 1.5 \mathrm{~m}$ and a depth of 0.5 m , with signals read by PMTs at both ends of the smallest vertical face of the block.
2. On top of the WCD there are two MARTA RPCs, each with a surface of $(1.5 \times 1.5) \mathrm{m}^{2}$ and with 16 charge collecting pads. Each RPC is covered with a thin (5.6 mm) layer of lead.

> Depth of water tank too small?
> Outdoor operation?
> Glass vs bakelite
> Granularity of the read-out?
> Analog read-out?

