

1

ASIM – challenges and possibilities

Nikolai Østgaard, On behalf of the ASIM team University of Bergen, Norway

ASIM - payload

MXGS

Modular X- and Gamma-ray Sensor: X- and gamma rays, 2 layers Coded mask – full FOV

MMIA: Modular Multi-spectral Imaging Array Nadir - looking: 2 photometers 2 cameras

If funding available: One more MMIA Limb-looking

April, 2010

ASIM

Columbus on ISS

- Photometers 10 microsec (10 kHz)
- Cameras 40 ms
- 337.0 nm (N2 2PG) Sprites (absorbed by O2)
- 777.4 nm (O1) Lightning

2004-07-18/21:30:15.417

MMIA

- Camera position of lightning/sprite
- Photometer time at 10 microsec

April, 2010

www.ift.uib.no

ASIM - MXGS

Coded mask – full FOV 1- Imaging (15-150 keV) – 1024 cm² - CZT 2. Spectral analysis (15 keV-20 MeV) CZT+BGO

April, 2010

www.ift.uib.no

MXGS – exploded view

$1024 \text{ cm}^2 \text{CZT} - 5 \text{ mm}$ thick - 16384 pixels $900 \text{ cm}^2 \text{BGO} - 32 \text{ mm}$ thick

www.ift.uib.no

MXGS – two layers

Imaging (15-150 keV) – Pixelated CZT layer
 Spectral analysis (15 keV-20 MeV) – CZT + BGO

April, 2010

Agile workshop

RHESSI TGF if they were detected by ASIM

1/r2: ISS at 350 km RHESSI at 600 km

RHESSI: 250 cm^2 ASIM: 1024 cm^2

ASIM

RHESSI TGF if they were detected by ASIM

RHESSI: average 27 cnts ASIM: average 270 cnts

ASIM Q1: How common are TGFs?

```
BATSE: 10 TGF pr year
RHESSI: 100 TGF pr year - average 27 cnts
ASIM: 1000 TGF pr year - average 270 cnts
```

```
If TGF follow a power law distribution:

F(n) \sim n^{-\lambda}

\lambda = 2.0: 4/24 \text{ hour:} 1000 \text{ TGFs}

\lambda = 2.5: 9/24 \text{ hour:} 2000 \text{ TGFs}
```

This is one of the main questions answered by ASIM.

Images for 400 incoming TGF photons on 1x1 and 2x2 cm² mask elements – 30 deg off-axis

1x1 cm

Backprojection image of TGF 30 deg off-axis with 400 incoming photons to 1x1 cm2 mask elements

X-axis (degrees)

10

12

2x2 cm

Backprojection image of TGF 30 deg off-axis with 400 incoming photons to 2x2 cm2 mask elements

4

axis (degrees)

.

10

15

14 1

35

Images for 300 incoming TGF photons on 1x1 and 2x2 cm² mask elements – 30 deg off-axis

1x1 cm

Backprojection image of TGF 30 deg off-axis with 300 incoming photons to 1x1 cm2 mask elements

Backprojection image of TGF 30 deg off-axis with 300 incoming photons to 2x2 cm2 mask elements

2x2 cm

15

10

ā

14

ASIN

ASIM Q2: Are there TGFs without lightning

- ASIM first to image a TGF
- Streamers can form without subsequent return stroke.

ASIM Q3: What type of lightning?

Combined with other measurements (VLF-ELF) timing can give us information about type of lightning.

ASIM

17

Beamed source Discrete altitude Photons

High energy cut-off moves to 1) lower energies as escaping angles increase

TGF spectral characteristics

- Low energy cut-off moves to 2) lower energies as TGFs are produced higher
- 3) Peak moves to lower energies
- Bump around 0.7-1 MeV or 4) flattening at 500 keV for TGFs produced deep disappears higher up

keV

ASIM Q4: Production altitude

Gjesteland e	et al.,	2010
--------------	---------	------

	Table 1. Altitudes											
BATSE		Beamed			Cone							
TGF	TD $[\mu s]$	$\emptyset[\mathrm{km}]$	new[km]	$TD[\mu s]$	Flux	$\mathrm{DL}[\%]$	$\emptyset[\mathrm{km}]$	new[km]	$TD[\mu s]$	Flux	$\mathrm{DL}[\%]$	
2144	125 ± 22	39	17	148 ± 22	0.62	272	25	25	162 ± 22	0.62	352	
2370	124 ± 18	40	16	117 ± 21	0.36	208	41	22	96 ± 12	0.36	230	
2465	147 ± 19	26	21	137 ± 20	0.49	268	27	24	124 ± 17	0.49	338	
2955	145 ± 40	39	23	118 ± 16	0.44	216	38	26	80 ± 21	0.51	277	
5587	66 ± 34	14	12	52 ± 17	0.20	46	17	29	54 ± 17	0.28	111	

Results for 5 TGFs where BATSE deadtime was corrected, converge with results from others: 15-20 km

ASIM will give production altitudes for many single TGFs

April, 2010

ASIM Q5: Spatial distribution of produced photons

BATSE analysis indicated beamed distribution – but this is still an open question

This is important for production mechanism.

April, 2010

www.ift.uib.no

ASIM

Energy loss in Compton scattering

Photons measured outside the production cone are Compton scattered

• High energy photons (E>10 MeV) measured at satellite altitudes are scattered less than 10°.

•If satellite measurements finds:

- High energy cut off at increasing angles.
 - indicates narrow TGF production cone.
- High energy photons measured at large angles.
 - Indicates wide TGF production cone.

Electrons are accelerated in the direction of –E. The geometry of the E-field defines the production cone.

Superposition of TGFs cannot tell - it could be superposition of narrow beams in different directions

April, 2010

Questions - summary

- 1. How common are TGFs
 - Give hint towards type of lightning
- 2. Are there TGFs without lightning
 - Streamer??
- 3. What type of lightning
 - Combinde with other measurements
- 4. Production altitude
 - Another hint towards type of lightning
- 5. Spatial distribution of produced photons
 - Geometry of electric field generating bremsstrahlung

Secondary Science

Whistler-induced electron precipitation

- Lightning induced precipitation (LEP)– cyclotron resonance
- MXGS will see the soft LEP

Relativistic Electron Precipitation

- Continuous and burst
- MXGS will see the continuous (500 times more intense than TGFs)
- Aurora
 - MXGS will see this, of course.

April, 2010

Future plans

- Balloons French COBRAT
- Aircraft several options if money is found

- X- and gammaray detector 1 microsec res
- Electric Field measurement 1 microsec res
- Want to see if TGF is before the discharge return stroke, which would indicate streamer/leader tip generation
- TGF is after the discharge favour the feed-back theory, where positrons and downgoing gamma rays contribute to avelanche process.

Thanks

April, 2010