The AGILE survey of Microquasars in the Galactic Plane

S. Sabatini (INAF-IAPS)

The AGILE Payload: the most compact instrument for highenergy astrophysics

• gamma-ray imager (30 MeV- 30 GeV)

•hard X-ray imager (18-60 keV)

large FOVs (1-2.5 sr) and optimal angular resolution

AGILE 2-years exposure γ-ray sky (E > 100 MeV) 2007, July – 2009 June

 Gamma-ray emission in general is rare or not detectable (e.g., GRS 1915+10).

 Gamma-ray emission in general is rare or not detectable (e.g., GRS 1915+10).

	Θ (degrees)	β	Г	L _X /L _E	γ/TeV	retion dis
Cyg X-1	30?	?	?	0.1-1	YES	
Cyg X-3	< 14	> 0.8	> 1.6	0.1-1	YES	
SS 433	80	0.26	1.03	0.01	no	
GRS 1915+105	70	0.92	2.5	0.1-1	no	
GRO J1655-40	> 70	0.9	2.5	1	no	
GRS 1758-258	?			0.1-1	no	
XTE J1550-564	60-70	> 0.8	1.5	0.1-1	no	
Sco X-1	> 70	> 0.8	> 1.6	0.1-1	no	
LS I 61 303	?	?	?	10-4	yes	
LS 5039	< 80	> 0.2	?	10-4	yes	

- Gamma-ray emission in general is rare or not detectable (e.g., GRS 1915+10).
- AGILE searched extensively since 2007 hard X-ray outburst activity possibly related with gamma-ray emission: NONE WAS FOUND. (AGILE was the only instrument capable of doing this search).

- Gamma-ray emission in general is rare or not detectable (e.g., GRS 1915+10).
- AGILE searched extensively since 2007 hard X-ray outburst activity possibly related with gamma-ray emission: NONE WAS FOUND. (AGILE was the only instrument capable of doing this search).
- in Cygnus X-3 clear evidence of gamma-ray emission at major spectral transitions (soft-tohard and hard-to-soft) tini - AGILE Survey of Microquase

Tavani et al. Nature 2009

Galactic "Micro-QSOs" (radio "jet" sources)

	Θ (degrees)	ß	Γ	L_{χ}/L_{E}	γ/TeV
Cyg X-1	30?	?	?	0.1-1	YES
Cyg X-3	< 14	> 0.8	> 1.6	0.1-1	YES
SS 433	80	0.26	1.03	0.01	no
GRS 1915+105	70	0.92	2.5	0.1-1	no
GRO J1655-40	> 70	0.9	2.5	1	no
GRS 1758-258	?			0.1-1	no
XTE J1550-564	60-70	> 0.8	1.5	0.1-1	no
Sco X-1	> 70	> 0.8	> 1.6	0.1-1	no
LS I 61 303	?	?	?	10-4	yes
LS 5039	< 80	> 0.2	?	10-4	yes

Cyg X-1	30?	?	?	0.1-1	YES		
Cyg X-3	G. PIANO (next talk)						
SS 433	80	0.26	1.03	0.01	no		

	Θ (degrees)	β	Г	L_X/L_E	γ/TeV	
Cyg X-1	30?	?	?	0.1-1	YES	

Cygnus X-1

- It is the archetypal black hole binary system in our Galaxy
- O9.7 lab supergiant star orbiting around a compact star (mass lower limit 6-13 $\rm M_{\odot}$)
- Extensively monitored in radio, IR, UV and X-rays.
- One of the most X-ray prominent. <u>Highly</u> variable on all timescales (months to seconds)

Cyg X-1 TYPICAL SPECTRAL STATES

High-energy cut-off @ ~150 keV

Cyg X-1 TYPICAL SPECTRAL STATES

- Blackbody component with kT ~ 0.5 keV
- Power law tail with Γ ~2-3

Cyg X-1 TYPICAL SPECTRAL STATES

Transitional states

Comptonization Models

the cool disk moves inwards, and penetrates into the inner coronal region. Only the nonthermal accelerator continues to make a significant contribution to the corona's power.

disk puffs up and acts as a hot, Comptonizing corona

PRE-AGILE *γ***-RAY OBSERVATIONS**

After EGRET, AGILE was the first satellite sensitive to γ -rays (E > 100MeV)

SEARCH FOR <u>PERSISTENT</u> <u>EMISSION</u> from Cyg X-1 in GAMMA-RAYS

CYG X-1 AGILE GAMMA-RAY MONITORING

AGILE DEEP INTEGRATIONS

Sabatini et al 2010

AGILE DEEP INTEGRATIONS

Sabatini et al 2010

AGILE DEEP INTEGRATIONS

Sabatini et al, in prep

Comptonization Models

Coppi 1999

Model predictions for Cyg X-1

Compactness Parameters:

$$I = L\sigma_T / Rm_e c^3$$

Model predictions for Cyg X-1

Compactness Parameters:

 $I = L\sigma_T / Rm_e c^3$

AGILE data seem to favour The following range:

*I*_s ≤ 1

 $I_h \leq 0.3$

Cyg X- 1 TRANSIENT ACTIVITY in GAMMA-RAYS

FAST FLARING ACTIVITY

- VHE (>100GeV) flare lasting ~1hr (MAGIC; Albert 2007)
 - An intense peak in hard
 X-rays followed it
 (INTEGRAL; Malzac
 2008)
- Transient relativistic
 RADIO jet ~20min
 (MERLIN; Fender 2006)

HARD STATE 1-day duration (or less)

SIGNIFICANCE: 5.3 σ F_y = 232±66 x 10⁻⁸ ph/cm²/s

INTERMEDIATE STATE 3-days duration (or less)

SIGNIFICANCE: 3σ F_y = 145±78 x 10⁻⁸ ph/cm²/s

S. Sabatini - AGILE Survey of Microquasars

CONCLUSIONS

 Gamma-ray emission is rare or undetectable in microquasars

	Θ (degrees)	β	Γ	L _X /L _E	γ/TeV
Cyg X-1	30?	?	?	0.1-1	YES
Cyg X-3	< 14	> 0.8	> 1.6	0.1-1	YES
SS 433	80	0.26	1.03	0.01	no
GRS 1915+105	70	0.92	2.5	0.1-1	no
GRO J1655-40	> 70	0.9	2.5	1	no
GRS 1758-258	?			0.1-1	no
XTE J1550-564	60-70	> 0.8	1.5	0.1-1	no
Sco X-1	> 70	> 0.8	> 1.6	0.1-1	no
LS I 61 303	?	?	?	10-4	yes
LS 5039	< 80	> 0.2	?	10-4	yes

CONCLUSIONS

- Gamma-ray emission is rare or undetectable in microquasars
- Cyg X-1 UL puts important constraints to Comptonization models (confirmed at large)

CONCLUSIONS

- Gamma-ray emission is rare or undetectable in microquasars
- Cyg X-1 UL puts important constraints to Comptonization models (confirmed at large)
- However, possible violations of model predictions arise during gamma-ray flares

CONCLUSIONS #2

- AGILE DATA in POINTING are ideal to study transient events: we have a list of unidentified flaring sources
- They could be related to new gamma-ray binaries (see e.g. 1FGL 1018.6-5856) or other less understood sources (see e.g. SFXT).

S. Sabatini - AGILE Survey of Microquasars

S. Sabatini - AGILE Survey of Microquasars

S. Sabatini - AGILE Survey of Microquasars