The ALMA contribution to the study of the blazar jets

M. Orienti

(Bologna University, INAF-IRA)

AGILE 9th Scientific workshop

17/04/2012

- The extragalactic γ-ray sky and relativistic jets
- The Atacama Large Millimeter Array
- Relativistic jets in the ALMA era
- ALMA and the VLBI Network

The extragalactic y-ray sky

In the First AGILE Catalogue all the extragalactic sources are blazars

In the 2LAC: 96% blazars

4% misaligned AGN (FRI and SSRQ)

4 Seyferts and 2 starburst with γ rays from star formation

Dominated by radio-loud AGN

The relativistic jet

Only ~10% of the AGN population is radio-loud Their radio emission is related to the presence of relativistic jets producing synchrotron radiation

> Luminosity ~ $10^{49} - 10^{50}$ erg/s Linear size ~ from pc to Mpc scales

The blazar sequence

Jets emit from radio to γ rays

- Low energy: synchrotron
- High energy: inverse Compton

IC produced by the relativistic electrons that scatter:

- their own synchrotron photons (Synchrotron-self Compton)
- external photons from torus, disk, BLR... (External Compton)

Derived from radio selected blazars by Fossati et al. (1998)

Jets on parsec scale

- Usually one-sided
- \bullet Compact components with T $_{\rm B}$ exceeding the Compton catastrophe limit (10^{12} K)
- Superluminal motion

 $\beta_{app} \sim 25!!$

Open questions

- How do jets form?
- What is the γ -ray emitting mechanism?
- Where is the region responsible for γ -ray emission?
- What is the "jet-base"?
-

Why mm/sub-mm observations?

•Radio band highly selfabsorbed

• Discriminate the emission models at low energy

- Quasi-simultaneous mm/sub-mm and γ -ray flares due to less opacity
- Possibility to study the various stages of the shock along the jet, i.e. formation, plateau, decaying
- Determining the distribution and strength of the magnetic field

AGILE 9th Scientific workshop

17/04/2012

The Atacama Large Millimeter Array

https://almascience.nrao.edu

Located at Chajnantor, North Chile, in the Atacama desert

• From 86 to 720 GHz i.e. 3mm to 450 µm

• Many configurations: compact: 160 m extended: ~16 km

• Spectral resolution: 3.8 kHz – 2 GHz per channel (@110 GHz 1 km/s=370kHz)

• FULL POLARIZATION!

- 50 12-m antennas (main ALMA array)
- 12 7-m antennas (ACA)
- 4 12-m antennas (Total Power)

The Atacama Large Millimeter Array

Spatial resolution:

3" - 40 mas @ 110 GHz 1.3" - 20 mas @ 230 GHz 0.9" - 12 mas @ 345 GHz 0.4" - 6 mas @ 675 GHz

Atmospheric transmission at Chajnantor, pwv = 0.5 mm 5.0 Transmission 5 6 9 9 9 0.2 200 400 600 800 1000 Frequency [GHz]

The dry conditions at the site allow observations up to 720 GHz

Different emitting models

High sensitivity observations

Planck 10σ is 0.25–1.0 Jy depending on the band. Only the brightest objects can be observed

The majority of the radio sources is much fainter!!!

ALMA rms in 1 min: 0.2, 0.3, 0.6, 5.3 mJy beam⁻¹ at 100, 230, 345, and 675 GHz

Almost 2 orders of magnitude more sensitive!!!

Time delay of the flare at different λ

The peak of the flare in γ rays and at mm/sub-mm is almost simultaneous

Strong γ -ray flares take place **AFTER** the rise of the mm flux density

Strong mm flares seem to be related to the ejection of a superluminal plasmoid in the jet, i.e. a shock

Is the γ-ray site of some flares off-nuclear?

The magnetic field

150

50

2007

2008

2009

Year

2010

2011

EVPA (deg)

Distribution of the magnetic fields

TRANSVERSE/OBLIQUE SHOCK!

Spatial resolution: mm-VLBI

Jet base: $197x54 \mu as = 21x6 l.d. = 69x19 R_s$ transverse width of jet at 0.5 mas: ~174 Rs clear transverse structure, counter-jet feature? Resolution: 110x40 μas Size < 0.03 pc: ~ 300 RS

But ALMA cannot go further than 5 mas!!

Actual situation: GMVA

http://www.mpifr-bonn.mpg.de/div/vlbi/globalmm/

Capabilities (12hr):

3mm (86 GHz)Resolution= 45 µas Bas. rms=50–350 mJy rms = 1 – 5 mJy

VLBA + Effelsberg+IRAM-30m+PdB+Metsähovi+Yebes+Onsala

A step forward The Event Horizon Telescope

http://eventhorizontelescope.org/index.htm

The location of the "jet-base"

AGILE 9th Scientific workshop

17/04/2012

Summary and outlook

- The ALMA sensitivity and operating wavelengths provide a unique opportunity to observe the region where γ rays are produced
- The availability of <u>polarization</u> observations will be crucial to constrain the characteristics of the magnetic fields in the very first part of the jet, and to derive their evolution as a shock passes through
- With its <u>unprecedented resolution</u> and sensitivity ALMA in a VLBI network (10 µas and 10 mJy/b) will shed a light on the event horizon and the region where jet forms and collimates

radio (6 cm)

VLBA, VERIAS, HESS, MAGIC collaborations

