The Crab pulsar as seen by the MAGIC telescopes

Outline

- The MAGIC telescopes
- Mono observations
- Stereo observations

G. Giavitto, S. Klepser, T.Y. Saito, T. Schweizer

Collaboration: ~ 150 Physicists, 21 Institutes, 8 Countries:

La Palma, IAC 28° North, 18° West

MAGIC-II in operation since 2009

Goal: Achieve the lowest energy threshold among CTs Close gap between space & 9th Agile Workshop, Rome, 20 ground-based gamma-ray telescopes 2

The Cherenkov technique

Basic fact: Gamma-rays absorbed in atmosphere

Satellites

- Direct detection
- Small background
- Small Effective Area ~1m²

Ground Detectors

- Indirect detection
- Enormous hadronic background
- Huge Effective Area ~ 10⁵m²

MAGIC Physics Targets

Pulsars one of the hottest topics

Pulsar models: overview

Different models try to explain observed γ-ray emission.

- Assume different emitting region in magnetosphere → different emission geometry: PC, OG, SG
- Spectrum depends on the physics of the emitting region

Light curves depend on geometry

Gamma-ray pulsars with space telescopes

101 pulsars found by Fermi
 Spectra up to ~10 GeV consistent with exp. cutoff

Polar Cap rejected

Outer Gap favored

Are Pulsars visible in VHE Y-rays?

Models for HE emission (polar cap, outer or slot gap) predict exp. or super exp. cutoffs @ few GeV.
 Observational challenge for CTs since 20 years

Pulsar observations modes with MAGIC

MAGIC tried from the very beginning to detect pulsars

 Developed dedicated hardware to help to the pulsar program (central pixel, sumtrigger,...)

	Mono (2004-2007)	Mono (2007-2009)	Stereo (2009-2011)
Telescopes	MAGIC I	MAGIC I	MAGIC I & II
Energy threshold	60 GeV	25 GeV	50 GeV
Sensitivity > 100 GeV	7.5% Crab	4.4% Crab	1.6 % Crab
	Insufficient sensitivity	The lowest threshold	The best g/h separation

MAGIC Crab pulsar Timeline

Oct. – Dec. 2005
 std. trigger (>60 GeV)
 2.9 σ excess in P2!

 Oct. 2007 – Feb 2008 sum trigger (> 25 GeV)
 6.4 σ excess in P1+P2!!

• Oct. 2008 – Feb 2009

sum trigger (> 25 GeV)

Fermi launched

Sum trig.

developed

MAGIC II commissioned

 Oct. 2009 – Feb 2011 stereo trigger (> 50 GeV)

Hint

Detection

First Crab pulsar detection above 25 GeV

Mono Observations with sumtrigger - Oct.07 to Feb.08: 22.3 h

Clear detection: 6.4 Pulses in phase with EGRET

> P1 clearly visible at 25 GeV →First Surprise

Pulsed emission still visible > 60 GeV ! P2 became dominant

Mono observations (2007-2009): Detection

59 hours from Oct. 2007 to Feb. 2009 with SumTrigger

P1 (-0.06-0.04): 6200 +- 1400 events (4.3 σ)P2 (0.32-0.43) : 11300 +- 1500 events (7.4 σ)P1+P2 : 17500 +- 2300 (7.5 σ)

Mono observations (2007-2009): Spectrum

Obtained total pulsed spectrum and spectra for each peak separately up to 100 GeV

Inconsistent with the extrapolation of the exponential cutoff (>5 σ). Spectra between 25 GeV and 100 GeV show a power law.

	P1 + P2	P1	P2
F _o at 30 GeV [10 ⁻⁹ cm ⁻² s ⁻¹ TeV ⁻¹]	3.1+-1.0+-0.3	4.5+-2.3+-2.6	10.0 +-1.9 +- 2.6
Index	-3.4+-0.5+-0.3	-3.1 +- 1.0 +- 0.3	-3.4 +- 0.5 +- 0.3

MAGIC stereo

Two 17m telescopes observing in stereoscopic mode since fall '09

Why stereo?

Stereoscopic provides: better reconstruction of shower direction & additional shower parameters

This means:

- Better hadron rejection
- Better angular resolution:
- 0.1°@100 GeV, down to 0.04° E>1 TeV
- Better energy resolution:20%@100 GeV, down to 15% at 1 TeV
- Enhances the sensitivity over the whole energy range (2-3 better)
- Energy threshold: ~ 50 GeV

Most sensitive observatory in the range 50-200 GeV

Stereo observations (2009-2011): Detection

Used 73 h of stereo data from Oct09 to Feb1 43 Wobble, 30 ON/OFF

H-test gives 6.4 σ P1: 356 +- 69 events (5.2 σ) P2: 880 +- 101 events (8.9 σ)

> Pulsed emission detected up to 400 GeV !!

Stereo observations (2009-2011): Detection

Used 73 h of stereo data from Oct09 to Feb1 43 Wobble, 30 ON/OFF

Stereo observations (2009-2011): Detection

Light curve morphology

Peaks width get narrower with energy

The pulses are aligned, becoming very narrow @ VHE

Stereo observations (2009-2011): Spectrum

VHE spectrum of Crab pulsar

MAGIC Stereo provides spectra up to 400 GeV.

Mono/stereo spectra agree... and go well beyond a cutoff at few GeV!

> In agreement with VERITAS (Aliu et.all 2011)

Stereo observations (2009-2011): Spectrum

First pulsar Phase-resolved spectrum @ hundreds GeV !

Good agreement to MAGIC-Mono (< 2 Sigma despite different systematics)

MAGIC measurements rule out extrapolation of Fermi exponential fit.

A possible explanation for a VHE tail (I)

Extension of Outer Gap scenario by K. Hirotani (arXiv:1108.5391)

- Detected VHE pulsed emission caused by IC scattering of secondary & tertiary e⁺⁻-pairs on magnetospheric IR-UV ph.
- Predicted Power law component from 10 Gev up to 1 TeV
- In the calculations, angle between rotational and B axes assumed to be 65°, and observer's viewing angle 106°.

MAGIC mono & stereo spectra reproducible with self-consistent OG model

A possible explanation for a VHE tail (II)

Alternative explanation by Aharonian et al. (Nature 482, 2012)

- VHE component resulting from the abrupt acceleration of a cold ultrarelativistic wind
 - Wind accelerated in a narrow zone (20-50 light-cylinder radii), up to a Lorentz factor of (0.5–1.0)·10⁶
 - IC γ -ray emission of the wind explains emission >100 GeV

Summary

In the last years MAGIC contributed to the understanding of the gamma-ray emission of the Crab Pulsar

MAGIC detected the Crab pulsar in mono an stereo mode, and with different trigger schemes
Evaluates polar.

- First detection of Crab pulsar with a CT
- Both peaks visible & Cutoff higher than expected

The combination of mono and stereo observations allowed to obtain spectrum from 25 to 400 GeV
Points to IC

- First time phase resolved spectroscopy at VHE emission
- Spectra following a power law instead of exp. cutoff

Does other pulsar have a power-law tail?

Excludes polar cap model