Colliding Wind Binaries with AGILE: The Case of Eta Carinae

S. Sabatini (INFN Tor Vergata, INAF-IASF Roma) on behalf of the AGILE team

Colliding Wind Binary systems - Why?

- Early type stars (O, B, WR) are highly massive stars (M>20 M_o) having the strongest sustained winds among Galactic Objects.
- WR stars have the highest known mass loss rate ${\sim}10^{\text{-4}} 10^{\text{-5}} \text{ M}_{\odot}/\text{yr}$

Colliding Wind Binary systems - Why?

- Early type stars (O, B, WR) are highly massive stars (M>20 M_o) having the strongest sustained winds among Galactic Objects.
- WR stars have the highest known mass loss rate ${\sim}10^{\text{-4}} 10^{\text{-5}} \text{ M}_{\odot}/\text{yr}$

<u>Binary systems</u> containing such a massive star and a compact object have strong (dense and high velocity) colliding winds causing strong shocks were both e⁻ and p can be efficiently accelerated

CWB systems – γ -ray modelling

 Eichler & Usov(1993): seminal paper on non-thermal radiation from shock regions in CWB

CWB systems – γ -ray modelling

- <u>Eichler & Usov(1993)</u>: seminal paper on non-thermal radiation from shock regions in CWB
- Benaglia & Romero (2003): model IC emission for WR 140
- Reimer Pohl & Reimer (2006): depending on the injected e^{-} -to-p ratio IC and π^{0} decay can produce γ -ray emission

CWB systems – Searches in γ -rays

- Kaul & Mitra (1997): cross-correlation of WR and EGRET catalogues. Proposed possibile association of 8 WR stars with EGRET sources.
- Romero et al(1999): revised Kaul & Mitra and reduced the possible list to 3 likely γ-ray sources.
- Benaglia & Romero (2003): only WR 140 is left as a possibile candidate (50% CL).

The AGILE gamma-ray 1yr sky (E > 100 MeV)

The CARINA REGION (MW observations)

IRAS far-IR multicolor image

(from N. Smith 2009 Handb. Star Form. Regions II p.138)

Hubble Space Telescope

UV rays & winds of numberless young hot stars produce a wealth of spectacular nebular structures

X-Ray images

The ETA CARINAE CWB system

Hubble Mosaic of the Carinae Nebula

optical & X-ray

The ETA CARINAE CWB system

Eta Carinae as an interactive binary system:

SYSTEM PARAMETERS Period: 5.54 years eccentricity: ~0.9 Last periastron: 11th January 2009 Primary: log L/L_{\odot} = 6.7 Secondary (unseen) = O supergiant

Eta Car mass ~ 100 M_{\odot}

mass outflow $\sim 2 \times 10^{-4} M_{\odot}/yr$

wind speed ~ 600 km/s

Companion ~ 30 M_{\odot}

mass outflow ~2 x 10⁻⁵ M_{\odot} /yr

wind speed ~ 3000 km/s

S. Sabatini - The Bright Gamma Ray Sky, ASI-

Fig. 3. Light curve of η Car since 1820 until 2008 including visual (\bullet), photographic (\blacksquare), photoelectric (\blacktriangle) and our V CCD (\bullet) observations. The maximum peak reached in 2006 and the consecutive decline are clearly visible.

The ETA CARINAE CWB system

 η Car provides some crucial ingredients for the formation of high energy emission in CWBs:

1) strong variability in the mass outflows

2) high speed wind from the less massive companion

3) a radiative environment with a specific bath of soft photons from both stars.

X-ray MONITORING

• 2-10 keV rays from eta Carinae

The RossiXTE light curve during 1996-2009

Overlap of the 3 X-ray minima

• INTEGRAL 20-50 keV image

Possible Model for the X-ray emission

Two components: *soft* from circumstellar matter (constant) and *hard* from wind-wind collision region (increasing when approaching periastron, then eclipsed by opaque matter)

Hamaguchi et al 2007 ApJ 663, 522

The AGILE map of the Carina Region

AGILE accumulated a large exposure in the Carina Region, equivalent to ~ 5 months of effective livetime for an exposure of 10^9 cm² sec and flux sensitivity of 10^{-7} ph. cm⁻²s⁻¹ above 100 MeV.

The AGILE map of the Carina Region

AGILE accumulated a large exposure in the Carina Region, equivalent to ~ 5 months of effective livetime for an exposure of 10^9 cm² sec and flux sensitivity of 10^{-7} ph. cm⁻²s⁻¹ above 100 MeV.

Gamma-ray emission from Eta Carinae

Tavani et al. 2009 ApJ, 698, L142, 2009 (arXiv:0904.2736)

Gamma-ray emission from Eta Carinae

The source was positively detected during several individual observing runs showing a roughly constant gamma-ray flux over the whole observations period.

AGILE orbits	Date interval	MJD	N. days	η Car	\sqrt{TS} (**)	Counts	Average flux(***)
				phase $(*)$			
1146-1299	2007.07.13-2007.07.24	54294.5-54305.5	11	0.732	4.1	105 ± 29	67 ± 18
1429 - 1567	2007.08.02 - 2007.08.12	54314.5 - 54324.5	10	0.741	3.3	80 ± 27	58 ± 20
1584 - 1708	2007.08.13 - 2007.08.22	54325.5 - 54334.5	9	0.747	1.1	< 73	< 67
3673-4009	2008.01.08 - 2008.02.01	54473.5 - 54497.5	24	0.824	4.1	166 ± 45	$55\pm~14$
4194-4418	2008.02.14 - 2008.03.01	54510.5- 54526.5	16	0.840	3.1	96 ± 33	43 ± 15
6129-6480	2008.06.30 - 2008.07.25	54647.5 - 54672.5	25	0.910	5.6	214 ± 42	61 ± 12
6778-7001	2008.08.15 - 2008.08.31	54693.5 - 54709.5	16	0.930	1.3	< 105	< 46
7569-7664	2008.10.10-2008.10.17	54749.5 - 54756.5	7	0.956	4.0	80 ± 23	$99\pm28(^{****})$
8899-8995	2009.01.12 - 2009.01.19	54843.5 - 54850.5	7	0.002	2.2	48 ± 22	< 94

Gamma-ray emission from Eta Carinae

The source was positively detected during several individual observing runs showing a roughly constant gamma-ray flux over the whole observations period.

• Very weak or absent emission near periastron (AGILE ToO observation, Jan. 9-17, 2009)

• Weak or absent emission detected post-periastron (during AGILE pointings in April and August 2009).

NOTE: The October 2008 maximum is due to a flare (see next slide) rather than to a flux increase before periastron as in X-rays.

AGILE orbits	Date interval	MJD	N. days	η Car	\sqrt{TS} (**)	Counts	Average flux(***)
				phase $(*)$			
1146-1299	2007.07.13-2007.07.24	54294.5-54305.5	11	0.732	4.1	105 ± 29	67 ± 18
1429 - 1567	2007.08.02-2007.08.12	54314.5- 54324.5	10	0.741	3.3	80 ± 27	58 ± 20
1584-1708	2007.08.13-2007.08.22	54325.5 - 54334.5	9	0.747	1.1	< 73	< 67
3673-4009	2008.01.08-2008.02.01	54473.5 - 54497.5	24	0.824	4.1	166 ± 45	$55\pm~14$
4194-4418	2008.02.14 - 2008.03.01	54510.5- 54526.5	16	0.840	3.1	96 ± 33	43 ± 15
6129-6480	2008.06.30-2008.07.25	54647.5- 54672.5	25	0.910	5.6	214 ± 42	61 ± 12
6778-7001	2008.08.15 - 2008.08.31	54693.5 - 54709.5	16	0.930	1.3	< 105	< 46
7569-7664	2008.10.10-2008.10.17	54749.5 - 54756.5	7	0.956	4.0	80 ± 23	$99 \pm 28 \;(^{****})$
8899-8995	2009.01.12-2009.01.19	54843.5 - 54850.5	7	0.002	2.2	48 ± 22	< 94

The 11-13th Oct 2008 Eta Car Flare

2 days integration maps - clockwise

A relatively "soft" flare (100 MeV vs 400 MeV maps)

The gamma-ray flare of Oct 11-13th 2008 is mainly due to photons of energy lower than 400MeV

The keV to MeV Energy Spectrum of eta Carinae

Comparison with model predictions

AGILE detected a point source centered on the object Eta Carinae

Identification with the Eta Carinae is supported by:

- Eta Car is a very massive and powerful CW binary system
- It has a non-thermal X-ray excess (BSAX, INTEGRAL, SUZAKU)
- It is the strongest and hardest 2-10 and 22-100 KeV source in the field
- The two nearby hard X-ray sources detected by INTEGRAL are outside the AGILE error box
- Time variability both in X- and gamma-rays
- Multiple gamma-ray sources within the AGILE detection error box are unlikely
- No alternative identification so far

This would be the <u>first remarkable detection</u> above 100 MeV of a <u>colliding wind binary system</u>, confirming the efficiency of particle acceleration and the highly non-thermal nature of the strong shock in a CWB.

Searching for similar systems

