Gamma-ray SNRs highlights

Andrea Giuliani

Istituto Astrofisica Spaziale e Fisica Cosmica, Milano (INAF)

SNRs in gamma-rays

Bright gamma-ray sources:

Inverse Compton : electrons + ISRF photons $\rightarrow \gamma$ rays Electron Bremsstrahlung: electrons + ISM nuclei $\rightarrow \gamma$ rays Neutral π decay : protons + ISM nuclei $\rightarrow \pi^{\circ} \rightarrow \gamma$ rays

No time signature !

AGILE's SNRs			
dis	st (kpc)	age (kyrs)	size(')
IC 443	1.5	30	45
W 28	2 - 3	>35	50
RX J1713.7-3946	1.2	2	65

SNR IC 443

In radio and optical clear visible shell structure

Distance : 1.5 kpc

Age: 30 kyrs

Size: 20 pc (45')

A system of molecular clouds is associated to the SNR

IC 443 SNR and Molecular Clouds

IC 443 – TeV detection by MAGIC

IC 443 – TeV detection by VERITAS

IC 443 seen by AGILE (2008)

The state of the second state of the state o

Diffusion of CR in the Interstellar Medium

$$df \frac{(E,r)}{dt} = D \nabla^2 f(E,r) + \frac{d}{dE} Pf(E,r) + Q(E,r)$$

$$R_{diff} = 2\sqrt{Dt}$$

Aharonian & Atoyan, A&A, 309, 1996

Diffusion Coef :

 $D(E)=10^{26} (E/10 \text{ GeV})^{0.5}$

t ~ sqrt(E)

IC 443: EGRET vs. MAGIC data

Impulsive vs. continuous injection

Torres et al., MNRAS, 08

IC 443 gamma spectrum

Model: pp collision + e^{-} bremstrahlung Spectral indices: $\alpha p = \alpha e = 2.25$

Mcl = 20 Msol

see also : Gaisser et al., 1998

SNR W 28

- Distance : 2 3 kpc
- Age: > 35 yrs
- Size: 20-35 pc (50')
- **Mixedmorphology SNR**

from Aharonian et al. 2008

SNR W 28 : M.Clouds and TeV

from Aharonian et al. 2008

AGILE/GRID Observations E>400 MeV (+HESS contours)

AGILE/GRID Observations E>400 MeV (+HESS contours)

HESS signif. map (+ AGILE contours)

AGILE/GRID Observations E>400 MeV

HESS signif. map

(+HESS contours)

(+ AGILE contours)

Model for W 28

- Gamma ray by π^o decay
- Proton spectrum @ SNR : F~E^{-2.2}
- Diffussion : D=10²⁶ (E/10 GeV)^{0.5}
- Distances of targets: A region : 5 pc B region : 10 pc
- Age of the SNR : 45 kyrs

Giuliani et al. 2009 in prep.

RX J1713.7-3946

Distance : 1.2 kpc

Age: 2 kyrs

Size : 65'

SNR RX J1713-3946

AGILE/GRID

Intensity Map (E> 400 MeV)

NANTEN

CO map

SNR RX J1713-3946

AGILE/GRID

Intensity Map (E> 400 MeV)

HESS Intensity Map

The puzzling SNR J1713

Gev and CO correlate strongly

Gev and TeV correlate weakly

Conclusions

- SNRs are finally resolved in the MeV-GeV energy range
- Clear correlation between 100 MeV-GeV emission and shocked Molecular Clouds (IC 443, W 28, RX J1713)
- Apparent flux anticorrelation between 100 MeV -Gev and TeV bands
- GeV and TeV connection is crucial to understand the SNRs physics

Thank you !