


The Moon Mapping project

The Moon Mapping project
brings together students
and researchers from Italy
and China to jointly work on
the analysis of data from
the Chinese lunar missions
Chang’e-1 and Chang’e-2.

The project combines
complementary expertise from
several universities and research
institutions in both Countries, such
as automatic crater recognition
and characterization from remote
sensing data and advanced 3D
visualizations. Six workshops and
several meetings have been
organized in different cities in Italy
and China.

One of the important outcomes of
the project is a geological map of
the Sinus Iridum region on the
Moon. This map was presented to
the Chinese and Italian ministers
during the «China-Italy Science,
Technology & Innovation Week»
held in Beijing in November 2017
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ABSTRACT: 
 
The research project ‘Moon Mapping’ has been established in 2014 between the Italian and Chinese Governments to promote 
cooperation and exchange between undergraduate students from both countries. The operational phase of the project started in early 
2015, and will end in 2017, for a total length of three years. The main aim is to train new scholars to be able to work on different 
kinds of remotely-sensed data collected over the Moon surface by the Chinese space missions Chang’E-1/2. The project coordination 
has been assigned to the Italian Space Agency for the Italian side and to the Center of Space Exploration, China Ministry of 
Education, for the Chinese side. Several Chinese universities and Italian national research institutes and universities have been 
officially involved in this project. Six main research topics have been identified: (1) map of the solar wind ion; (2) geomorphological 
map of the Moon; (3) data preprocessing of Chang’E-1 mission; (4) map of element distribution; (5) establishment of 3D digital 
visualization system; and (6) compilation and publication of a tutorial on joint lunar mapping.  
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1. GENESIS OF THE PROJECT 
 
On the basis of the great experience that Italy and China have 
achieved in space exploration over the last decades, the 
governments of both countries agreed to foster scientific and 
technological cooperation in this field. In addition, both 
countries would like to promote the exploitation of existing 
large archives of data sets, in particular the ones collected 
during the recent Chinese missions (Chang’E series) on the 
Moon (see Sect. 3). In this context, the education and the 
exchange of new generation scholars to be enrolled in space 
exploration and planetary sciences are seen as a crucial 
points in both countries.  
According to these preliminary considerations, in 2012 the 
‘Joint Lunar Map Drawing Project by Chinese and Italian 
College Students,’ also know as ‘Moon Mapping Project’ 
(MMP), was organized. The definitive signature was held in 
Rome on 23 January 2015 by the Italian Space Agency (ASI) 
Science Data Center (ASDC) director Paolo Giommi and the 
vice-president of the Chinese Center for Space Exploration 
(COSE) Gengxin Xie. The focus of this project is improve 
cooperation in space applications, to train new Italian and 
Chinese university undergraduate students to work on 
different kinds of remotely-sensed data collected over the 
Moon surface by the Chinese space missions Chang’E-1/2, 
to make easier student exchange between both countries, and 
to create scientific opportunities.  
The operational phase started on Jan 2015 and is expected to 
complete at the end of 2017, for a total length of three-year 
activities. The project coordination has been assigned to the 
Italian Space Agency (ASI) for the Italian side and to COSE 
for the Chinese side. Several universities and national-level 
research institutes have been officially involved in the MMP 
on both countries, as presented in Table 1.  
Six main research topics have been focused, as it is 
summarized in Table 2 (see Sect. 3). Each topic is 
coordinated by two institutions, one per each country. 
Students have been assigned to each topic to cooperate under 

the guide of supervisors. A schedule of mutual visits and 
workshops has been defined to help and promote exchanges 
along the three years of the project. With the exception of the 
first round meetings to set up the organization of the project 
and to prepare a common research plan, students are involved 
in project meetings so that they may consolidate the 
cooperation among them, especially between students from 
both countries. Further discussion on the student 
involvement, which may be considered as a key-point of the 
MMP, are given in next subsection 1.2. 
The expected follow-up will consist on one side on the 
preparation of a new generation of young scholars to 
contribute to planetary science and space exploration. On the 
other, the MMP is expected to output scientific publications, 
a tutorial aimed at introducing people to work on planetary 
data, and a 3D Atlas of the Moon to display the results of the 
analysis obtained during the research activities.  
Further information, documents and news can be found at the 
website http://solarsystem.asdc.asi.it/change. 

 
Project Topics Topic Coordinators 

Italy China 
1 Map of the solar wind 

ion 
ASDC Tsingua 

University 
2 Geomorphologicl map of 

the Moon 
Politecnico 

Milan 
China Univ. 
Geosciences 

3 Data preprocessing of 
Chang’E 1 mission 

INAF-IAPS East China 
Normal Uni 

4 Map of element 
distribution 

Univ. of 
Cagliari 

Nanjing 
University 

5 3D visualization system ASDC China Univ. 
Geosciences 

6 Tutorial and Atlas on 
joint lunar mapping 

Chongqing 
University 

University 
d’Annunzio 

 
Table 2. – Topics of ‘Moon Mapping Project’ and institutions 
leading research activities in Italy and China.  
 

   
Institution Department Location, Country 
Italian Space Agency (ASI) ASI Science Data Centre (ASDC) Rome, Italy 
National Inst. of Astrophysics 
(INAF) 

Astronomical Observatory of Rome (OAR) Rome, Italy 
Institute for Space Astrophysics and Planetology (IAPS) 
Astronomical Observatory of Padua (OAPD) Padua, Italy 

National Research Council (CNR) Research Inst. for Geo-Hydrological Protection (IRPI) Perugia, Italy 
Politecnico di Milano  
(Technical University of Milan)  

Dept. of Aerospace Science and Technology Milan, Italy 
Dept. Architecture, Built environment and Construction Engineering (ABC) 

University of Cagliari Dept. of Chemical and Geological Sciences Cagliari, Italy 
University d’Annunzio IRSPS – Dept. of Engineering and Geology Pescara, Italy 
University of Padua Dept. of Geosciences Padua, Italy 
University of Parma Dept. of Civil, Environmental, Land Management Engineering and 

Architecture (DICATeA) 
Parma, Italy 

University of Pavia Dept. of Electrical, Computer and Biomedical Engineering Pavia, Italy 
China Ministry of Education Center of Space Exploration (COSE), Chongqing University Chongqing, China 
China University of Geosciences Dept. of Remote Sensing and Geo-Information Engineering, School of Land 

Science and Technology 
Beijing, China 

East China Normal University School of Geographic Sciences Shanghai, China 
Nanjing University School of Geographic and Oceanographic Sciences Nanjing, China 
Tsinghua University Dept. of Computer Science and Technology Beijing, China 

 
Table 1. - Members of ‘Moon Mapping Project’ between Italy and China.
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1.2 Involvement of students 
 
The core of ‘Moon Mapping’ project is represented by the 
central role of undergraduate students who are expected carry 
out the research activity under supervision of senior 
researches from universities and other institutions. 
Students are assigned to specific Topics and Sub-Topics of 
the project. Since there is a parallel structure involving both 
Italian and Chinese project members, also students have a 
direct counterpart working on a related topic. This strict 
cooperation would like to give the chance to compare 
different approaches to the research work, and to improve the 
capability to accomplish scientific investigations thanks to 
the exchange of ideas.On the other hand, students have the 
chance to work together with expert scholars in the field of 
Moon exploration and planetary research, and can benefit 
from the experience of the international network related to 
the MMP.  
Besides students who directly attend to the research activity, 
some dissemination actions are planned during the last year 
of the project. In particular, the organization of an 
international summer school on the processing techniques 
remote sensing data on the Moon is scheduled. This 
important activity will spread out the knowledge achieved 
during the MMP to a larger scenario of young scholars not 
only limited to Italy and China, but with the chance to 
involve students from other countries as well. 

 
 

2. DATA SETS FROM CHANG’E 1/2 MISSIONS 
 

The Chinese Lunar Exploration Program (CLEP), also 
known as the Chang’E (the Chinese Moon goddess), is an 
series of missions organized by the China National Space 
Administration (CNSA). The program incorporates lunar 
orbiters, landers, rovers and sample return spacecraft, 
launched using Long March rockets.  
The first spacecraft of CLEP/Chang’E program, the Chang’E 
1 (CE-1 - see Subsect. 2.1) lunar orbiter, was launched on 
2007. A second orbiter, Chang’E 2 (CE-2), was launched on 
2010 (see Subsect. 2.2). Chang’E 3 (CE-3), which includes a 
lander and a rover, was launched on 1 December 2013 and 
successfully soft-landed on Mare Ibridum on 14 December 
2013. The ‘Yutu’ rover travelled 114 m. CE-3 will be 
followed by a sample return mission, Chang'e 5 scheduled 
for 2017. 
The ‘Moon Mapping’ project was initially focused to exploit 
data from CE-1 mission, but subsequently the availability of 
some data sets from CE-2 became possible. A part of the data 
sets from CE-1/CE-2 missions can be downloaded from the 
webpage http://moon.bao.ac.cn/ceweb/datasrv/dmsce1 .jsp.  
 
2.1 Chang’E 1 
 
On October 24, 2007, CE-1 was successfully launched from 
the Xichang Satellite Launch Center. Up until 1st July 2008, 
CE-1 has accomplished lunar global data acquisition. CE-1 
carries 8 instruments (CCD stereo camera, laser altimeter, 
Gamma Spectrometers, X-Ray Spectrometers,  ow-Energy 

Ion Detector, High-Energy Solar Particle Detector, 
Microwave Detector, Interferometer Spectrometer Imager) 
which have obtained about 1370G of data. These data have 
been published online at present, available for international 
planet researchers (see above). 
CE-1 mission had four major goals: 
 

1. Obtaining 3D reconstructions of the landforms and 
geological structures of the lunar surface, so as to 
provide a reference for planned future soft landings. The 
orbit of CE-1 around the Moon was designed to provide 
complete coverage, including areas near the north and 
south poles not covered by previous missions; 

2. Analysing and mapping the abundance and distribution 
of various chemical elements on the lunar surface as 
part of an evaluation of potentially useful resources on 
the Moon. China hopes to extend the number of 
elements studied to 14 (K, Th, U, O, Si, Mg, Al, Ca, Te, 
Ti, Na, Mn, Cr, La) compared to the 10 elements (K, U, 
Th, Fe, Ti, O, Si, Al, Mg, Ca) previously probed by 
NASA's Lunar Prospector; 

3. Probing the features of the lunar soil and assessing its 
depth, as well as the amount of helium-3 (³He) present; 
and 

4. Probing the space environment between 40,000 km - 
400,000 km from the Earth, recording data on the solar 
wind and studying the impact of solar activity on the 
Earth and the Moon. 

 
In addition, the lunar probe engineering system, composed of 
five major systems – the satellite system, the launch vehicle 
system, the launch site system, the monitoring and control 
system and the ground application system – accomplished 
five goals: 
 
• Researching, developing and launching China's first 

lunar probe; 
• Mastering the basic technology of placing satellites in 

lunar orbit; 
• Conducting China's first scientific exploration of the 

Moon; 
• Initially forming a lunar probe space engineering 

system; and 
• Accumulating experience for the successive phases of 

China's lunar exploration program. 
 

2.2 Chang’E 2 
 
CE-2 is a Chinese unmanned lunar probe that was launched 
on 1 October 2010. It was a follow-up to the CE-1 lunar 
probe, which was launched in 2007. CE-2 was part of the first 
phase of the Chinese Lunar Exploration Program, and 
conducted research from a 100-kilometer-high lunar orbit in 
preparation for the December 2013 soft landing by the CE-3 
lander and rover. CE-2 was similar in design to CE-1, 
although it featured some technical improvements, including 
a more advanced onboard camera. After completing its 
primary objective, the probe left lunar orbit for the Earth–
Sun L2 Lagrangian point, to test the Chinese tracking and 
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control network, making the China National Space 
Administration the third space agency after NASA and ESA 
to have visited this point. It entered orbit around L2 on 25 
August 2011, and began transmitting data from its new 
position in September 2011. In April 2012, CE-2 departed L2 
to begin an extended mission to the asteroid 4179 Toutatis, 
which it successfully flew by in December 2012. This 
success made China's CNSA the fourth space agency to 
directly explore asteroids, after NASA, Europe's ESA and 
Japan's JAXA. As of 2014, CE-2 has travelled over 100 
million kilometres from Earth, and is conducting a long-term 
mission to verify China's deep-space tracking and control 
systems. 
 

3. PLANNED RESEARCH ACTIVITIES 
 

In this section the research content to be developed in each 
project Topic is briefly outline. The purpose here is not to 
draw a state-of-the-art on the use of CE-1/2 data for mapping 
different characteristics on the Moon, but just to focus on the 
activities that are strictly related to MMP. Some projects 
members have already developed their own studies that are 
not mentioned here, since they have been carried out 
independently from MMP. 
 
3.1 Topic 1 
 
The aim of Topic 1 is to produce a map of the solar wind ions 
on the basis of CE-1 data. Based on the lunar probe data and 
existing research results, the distribution of solar wind ion at 
critical moments will be drawn, by which to provide an 
interactive visualization approach for drawing low-energy 
solar ion flow distribution at arbitrary time, giving a real-time 
display of solar wind ion flow and its direction. 
The workplan of this Topic is as follows. In a first stage, a 
sample of data from CE-1 Solar Wind Ion Detector are 
delivered (664 files collected from 26 Nov 2007 to 31 Dec 
2007). Data are organized in a database hosted on a server at 
ASDC. File format are transformed to be ready to use. The 
following two data post-processing/analysis steps have been 
started: 
 

1. Spacecraft velocity evaluation; 
2. Sun Incidence angle evaluation. 

 
Next steps in data post-processing will be: 
 

1. Merging of SWIDA and SWIDB (time 
synchronization); 

2. Evaluation of solar wind parameters by SWIDA/B 
data fit; 

3. Production of Multidimensional solar wind maps; 
4. Evaluation of Earth/Sun magnetic fields; and 
5. Correction of the magnetic field effects. 

 
3.2 Topic 2 
 
This Topic is focused on the analysis of Moon 
geomorphology and the production of geomorphological 
maps representing different aspects. It is organized in three 
Sub-topics. 

a. Sub-topics 2.1: is devoted to the extraction of 
geometrical features for characterization of the 
impact structures and proximal ejecta, development 
of crater morphology and degradation;  

b. Sub-topic 2.2: focuses to the extraction and 
characterization of landslides on the Moon surface, in 
particular into the impact craters. Analysis of 
landslide triggering process and impact-related 
effects will be investigated as well; and 

c. Sub-topic 2.3: has the aim of doing research and 
characterization of lava-tubes below the Moon 
surface and their relations with sinuous rilles. 

Impact craters are one of the most important geological 
processes in the understanding of the formation and 
evolution of our Solar System. They have been observed on 
planets and small bodies’ surfaces, and therefore they kept 
the record of the cumulative effects of subsequent impacts, 
volcanic emplacements, tectonics, and so on. The MMP team 
has developed a valuable expertise on studying the impact 
craters starting from the DTM generation using stereo images 
and proceeding with the morphometric analysis. The 
morphometric characterization of the craters allows 
estimating the slope, the openness, the profile and plan 
curvature, and calculating the different geometrical planes. 
Furthermore the analysis of the impact process by means of 
the so-called shock physics codes has been started. In 
particular, the iSale hydrocode is adopted that relies on 
elasto-plastic constitutive models, fragmentation models, a 
number of EoS, multiple materials and a porosity compaction 
model. 
In line with the consolidated cooperation with China 
University of Geosciences on geometrical feature extraction 
from Moon images (Kang et al., 2015), the team at 
University of Pavia is currently working on the extraction of 
hints to craters and ridges using both 2D and 3D information 
from the stereo cameras of CE-1 and CE-2. The research 
work includes the definition of advanced techniques for the 
extraction of circular and linear geometrical features and the 
combination via feature level fusion of multiple hints for the 
detection of objects of interest, according to the procedure 
graphically described in Figure 3.  
 
 

 

Figure 3. - Crater extraction procedure scheme developed by 
University of Pavia. 
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Results, although preliminary, show potential in the 
approach, that will be further optimized to deal with large 
images, with the aim to be useful for finer resolution data on 
wide portions of the lunar surface. 
A working group (Politecnico di Milano-ABC, CNR-IRPI, 
University of Cagliari, INAF-OAR and INAF-OAPD) has 
been established to study large rock slides inside impact 
craters and to prepare a landslide inventory to be included in 
the Atlas (see Subsect. 3.6). So far, image from WAC (Wide 
Angle Camera) and DEM from LROC (NASA) at 100 m/px 
have been used to visually recognize 60 landslides in impact 
craters (Brunetti et al., 2015).  
On the other hand, the need for a more objective automatic 
method is required in order to make the recognition process 
independent from the subjective interpretation and to carry 
out an exhaustive search (see Guzzetti et al., 2012; Scaioni et 
al. 2014). In Mahanti et al. (2014) the Chebyshev 
polynomials have been applied to interpolate crater cross-
sectional profiles in order to obtain a parametric 
characterization useful for classification into different 
morphological shapes. Indeed, besides some important 
mathematical properties (e.g., orthogonality) that distinguish 
Chebyshev polynomials from other approximating functions, 
the lower order coefficients are correlated to some 
geomorphological characteristic of the crater and its 
surroundings. As an example, the zero order coefficient 
represents the average ground surface elevation, the 1st order 
is related with the local topographic slope and 2nd with the 
crater depth. The purpose of the interpolation with the 
Chebyshev polynomials is to model each crater with a 
theoretical shape. An example of interpolation is shown in 
Figure 4. The use of such polynomial approximations for 
detecting post-impact degradation processes in lunar craters 
has been already proposed in Mahanti et al. (2015). Here the 
analysis of odd coefficients of Chebyshev polynomials has 
been applied to detect asymmetries in the crater profile. The 
concept that is pursued in this subtopic is to recognize 
landslides by analyzing the discrepancy between the actual 
crater cross-sectional profiles and the theoretical ones 
(Yordanov et al., 2016). Four cross-sections are considered 
per each crater. Deviations from the theoretical shape can be 
detected through the analysis of the Chebyshev coefficients 
so that the landslide is automatically identified. Whilst the 
LROC-DEM has been used for the initial set up of the 
methodology, data from CE-2 will be also considered in a 
successive stage, due to similar spatial resolution. Indeed, the 
acquired stereo images from the equipped charge-coupled-
device (CCD) camera can reach a resolution of 7 m from CE-
2 circular orbit (reaching a minimum distance from ground 
of approx. 100 km), and 1.5 m around the perilune (minimum 
distance from ground of approx. 15 km), see Zhao et al. 
(2011).  
Further studies will include: the measurement of the 
landslide volume; the analysis of relationships between 
landslides and characteristics of the hosting craters as well as 
the surrounding terrain; the lithological and mineralogical 
characterization of surfaces using multispectral data acquired 
by the IIM data from CE-1. 

Another working group (CNR-IRPI, University of Cagliari) 
will focus on the research and characterization of lava-tubes 
below the Moon surface. Recent planetary missions have 
made available large amounts of remote sensing data. 
Among the many interesting results obtained from the 
analysis of high-resolution images is the detection of lava 
tubes on Mars and on the Moon (Haruyama et al., 2009). 
These caves, also present on Earth, originate from cooling 
and the subsequent consolidation of the outermost part of 
very fluid lava flows. In the harsh lunar environment, lava 
tubes can provide a natural shelter. Detection and 
characterization of lava tubes and their relations with sinuous 
rilles will use data available from the multispectral sensor 
IIM and the CCD. 
 

 
Figure 4. - Example of interpolation of a lunar crater cross-
sectional profile using Chebyshev polynomials. 
 

3.3 Topic 3 
 
Topic 3 has the aim of investigating calibration and 
preprocessing procedures for the sensors in the CE-1 
payload. Prior to data analysis and application, pre-
processing on the remotely sensed raw data is necessary for 
correcting distortion due to the characteristics of imaging 
systems and imaging conditions. It normally precedes further 
manipulation and analysis of the image data to extract 
specific information. The pre-processing of data is a crucial 
step in the remote sensing analytical workflow, and is often 
the most time consuming and costly.  
Since the CE-1 ended about seven years ago, several research 
groups have already started working on data preprocessing. 
Hu et al. (2013) have coped with the calibration of laser 
altimetry data, obtaining significant improvement on the 
quality of the final DEM. Wu et al. (2013) have dealt with 
the photometric correction and in-flight calibration of 
Interference Imaging Spectrometer (IIM) data onboard CE-
1. In the literature, several experiences about calibration of 
other sensors during space missions are reported. For 
example, Haruyama et al. (2008) have worked on the 
radiometric calibration of digital camera adopted during 
SELENE mission. 
Whilst other Topics of MMP are focused to output specific 
products, Topic 3 has a more general purpose and it’s 
expected to contribute to those aspects of sensor data 
processing that may be required in other Topics of the 
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project. In Figure 5, the pre-processing workflow of IIM data 
implemented during MMP is shown. 
 
 

 
 

Figure 5. - IIM pre-processing workflow. 
 
 
3.4 Topic 4 
 
The aim of Topic 4 is to output a map of element distribution 
on the Moon surface on the basis of data acquired by the 
Interference Imaging Spectrometer (IIM) onboard CE-1 (Wu 
et al., 2010). IIM sensor covers a spectral range (0.48-0.96 
µm) that can be used to retrieve information about the 
differences of lunar surface composition. Indeed, reflectance 
spectra may offer important information on mineralogy and 
lithology. Starting from the experiences of Wu et al. (2010; 
2013), the calibrated data acquired by IIM sensor will be 
used for the spectral characterization of the surfaces in terms 
of elements distribution, mineralogical composition and 
lithologic characterization. Both the indirect approach based 
on spectral parameters (see, e.g., Lucey et al., 2000), and the 
direct indication retrievable from the 0.9 µm (Fe2+ bearing 
silicates) absorption can be applied (even if IIM spectral 
range cannot investigate completely this absorption with 
respect to longer wavelength sensors). Moreover, by 
correlating spectral analysis of IIM data with other 
hyperspectral images covering a larger wavelength range 
(i.e., M3 data from sensor on onboard Indian satellite 
Chandrayaan-1 – see, e.g., Pieters et al., 2011), it will be 
possible to extrapolate more mineralogical indication from 
IIM data set. Laboratory spectral analysis on terrestrial 
analogues (e.g., Serventi et al., 2014), as well as lunar 
meteorites or lunar samples, can be useful to define these 
spectral relationships (e.g. Lucey et al., 2000). 
At this first phase the IIM data are obtainable through the 
MATISSE web-tool (see Subsect. 3.5). The data are 
georeferenced and the full set of 26 bands, ranging from 
522.37-918,109 nm, is available. 
As described in subsection 2.2, the IIM data will be also used 
for a specific lithological analysis of the landslides in the 
larger craters. In Figure 6, a preliminary processing result of 

these data is shown: the surface of this crater (diameter 7.5 
km) presents specific spectral anomalies. 
The results of the research activities in Topic 4 will be 
integrated with photo-interpretation and classification of the 
main elements as volcanic morphologies and craters to 
support the evolution and dynamics of these morphologies. 
It is also planned to compare the processed data with existing 
spectral imagery as Clementine UVVIS camera bands and 
M3 products. 
 

  
 
Figure 6. - The visualization of a lunar crater generated with 
a decorrelated stretching of a color composite using CE-1 
IIM. 
 
 
3.5 Topic 5 
 
This Topic, devoted to the establishment of a 3D 
visualization system, would likely interact with the majority 
of the other Topics as, thanks to advanced visualization 
procedures, data analysis would boost with a great impact on 
scientific return. 
At the present time the Italian side of the Moon Mapping 
project is focused in adding to the MATISSE web-tool 
(http://tools.asdc.asi.it/matisse.jsp - Zinzi et al., 2016) the 
data acquired by the Chinese missions to the Moon. 
Very recently, all the CE-1 observations acquired with the 
visible CCD camera and the VIS/IR IIM spectrometer have 
been made available to the MMP users using MATISSE. 
Furthermore, higher-order products of both CE-1 and CE-2 
are already present in the MATISSE database, including 
DEM and orthoimages. 
Using MATISSE it is possible to retrieve spatial data on the 
basis of a geographical query and to select one or more 
observations in order to either display a single observation or 
compute high-order products (i.e., mosaics, ratios, 
differences, RGB images) on the basis of available 
observations. The corresponding outputs can be managed by 
means of popular GIS desktop software packages (with 
GeoTIFF and ENVI format outputs) or using the advanced 
3D tools provided by Paraview files (Fig. 7). 
In the next future the number of observations available would 
likely rise, including also Solar Wind Ion Detector (SWID) 
and CE-2 data set, thus allowing the full exploitation of the 
available archives. 
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Figure 7. - The 3D visualization of a lunar crater generated 
using CE-2 high resolution ortophoto and NASA DEM 
(details in Zinzi et al., 2016). 
 
 
3.6 Topic 6 
 
IRSPS will edit a Moon Atlas dealing with the geological 
characterization of a number of sites in proximity of the 
maximum illumination areas of the lunar poles. The Atlas 
dataset will be based on CE-1 and CE-2 images and data. The 
Atlas will use as starting point the work by Mazarico et al. 
(2011) and will concentrate on  both lunar poles. These areas 
bear strong scientific interest such as the history of volatile 
(Chin et al., 2007), but, also, they are interesting for the 
human exploration. 
Data from these areas are critical for the planning and 
operations of future surface mission since:  
 
• these sunlit areas could be prime locations for the 

establishment of solar photovoltaic arrays, and, 
consequently, they are rather efficient in power 
generation; 

• sunlit area are thermally benign, the surface 
temperatures at the lunar equator and mid-latitudes 
depend almost entirely upon incident solar illumination, 
whereas the surface temperature of the permanent or 
quasi-permanent lit areas is nearly constant (Mazarico 
et al., 2011) facilitating the thermal design of surface 
habitats and equipment; 

• lunar regions from about 80° to the pole are of particular 
interest due to the possible presence of volatiles 
(Watson et al., 1961; Paige et al., 2010), especially in 
the permanent shadow regions (PSRs) seen as potential 
cold traps of volatiles (Nozette et al., 1996; Feldman et 
al., 2000; Bussey et al., 2003; Mitrofanov et al., 
2010a,b). 

 
 

4. CONCLUSIONS AND PROSPECTS 
 

This paper has outlined the ‘Moon Mapping Project’ between 
university and research institutes of Italy and China. The 
project has seen its kick-off on 2015 and is going to develop 
up to the scheduled end on 2017. The focus of the project is 
to promote cooperation between both countries in space 
applications and science. The main feature that characterize 

‘Moon Mapping Project’ is the strong student-oriented 
character. The research activity are promoted to actively 
involve undergraduate students and to make easier 
exchanges between both countries. Using the data of China's 
lunar exploration, undergraduates from both countries work 
together to map the moon in three dimension, and share the 
cooperation achievements globally. 
The cooperation between Italy and China is expected to 
deepen cooperation in the field of science and education. The 
main anticipated achievement of the cooperation is the joint 
publication of a textbook on lunar remote-sensing image 
processing. The textbook will be published in English and 
will be used either in relevant university classes and also as 
a guide-book in museums. 
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An Approach for Recognising Large Landslides Inside Lunar Impact Craters 

 

V. Yordanov1, M.T. Brunetti2, M.T. Melis3, A. Zinzi4, M. Scaioni1 

 

1. Introduction 

The Moon is the closest celestial body to the Earth and as such it is also the only natural satellite 
orbiting around our planet. Consequently, it has been also the object for numerous studies. Among 
them, geological studies have investigated slope failures [Bart, 2007; Brunetti et al., 2015; 
Buczkowski et al., 2016; De Blasio et al., 2011; Krohn et al., 2014; Massironi et al., 2012; 
Mazzantiet al., 2016; Quantin et al., 2004; Waltham et al., 2008; Williams et al., 2013]. First Pike 
(1971) performed studies about mass movements on the Moon using images obtained during the 
Apollo 10 mission. More recently, Xiao et al. (2013) studied lunar landslides and classified them 
into different morphologic groups, based on the criterion obtained for landslide classification on 
Earth (Cruden & Varnes, 1996). In Brunetti et al. (2015) a visual analysis is applied to detect large 
landslide features on the Moon, Mars and Mercury. 

The mass wasting processes could be considered as one of the most important factors for surface 
degradation in planetary science. Indeed, due to the variety and extent of this phenomenon, the 
number of methods for recognition and mapping different types of landslides also broadly varies. 
Geological slope failures on the Moon’s surface have already been observed, but a detailed and 
exhaustive lunar landslide inventory has not been produced yet. The following proposed approach 
has the goal to imply all the distinctive features of the problem with identification of lunar 
landslides in impact craters and to resolve them, with a low-level of uncertainty, resulting in a 
more objective and less time-consuming methodology. In particular, the approach is focused into 
the recognition of large slope failures (slumps) inside the cavities of simple impact craters. 

1.1 Simple impact craters 

In terrestrial planets one of the most frequent and common, surface changing process is the impact 
cratering, that not only influences the surface, but also it may affect the planetary evolution in any 
aspect. 

Although the impact craters can be labelled in general as circular rimmed depressions, they may 
largely differ from one another and can by classified according to size, substrate material, 
weathering and age. The fundamental shape of an impact crater is a bowl-shaped depression with 
elevated rims. The size of the craters widely varies in diameter (measured from rim to rim) from 
millimetre level to more than 2,500 km diameter. With increasing the diameter, the impact crates 
become proportionally shallower and more complex in shape, including terraced walls and central 
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peaks. Studies show that on all terrestrial planets and moons, such morphologic changes are 
notable (Pike, 1980). Furthermore, craters’ types are classified in the literature according to the 
morphologic features into simple, complex and multi-ring basins (Melosh, 2011). 

Simple impact craters’ shape can be conveniently described as a simple bowl-shaped. In addition, 
they have small, rounded or in some cases flat floors, with smooth walls, see Fig. 1. Craters from 
this class have a rim-to-rim diameter up to 15 km on the Moon and 3 to 6 km on Earth. The sharp-
crested rim stands about 4% of the crater diameter above the surrounding plain, which is a blanket 
with a mixture of ejecta and debris scoured from the pre-existing surface. The depth-to-diameter 
ratio of 1/5 is relatively high (Melosh, 2011). The floor of simple impact craters is covered by a 

lens of broken rock (“breccia”) which slumped down immediately after the impact. The thickness 
of this lens is around ½ to ⅓ of the crater rim-to-floor depth. 

1.2 Slumps 

The Moon’s surface is rich of surface features. Thus mass wasting processes can be identified on 
various lunar terrains, such as impact craters, volcanic domes, tectonics scarps, rilles, wrinkle 
ridges, etc. (Xiao et al., 2013). Despite of, the variety of multiple surface forms, the dominant 
features are impact craters and most of the lunar slope failures occur on their walls. Since the 
Apollo missions, some studies were performed, to study landslide’s morphological and 
distribution characteristics, as well as predisposing factors and triggering mechanisms (Pike, 1970; 
Xiao et al., 2013; Kumar et al., 2013; Brunetti et al., 2015). Regardless the absence of water, 
different authors classified lunar landslides in the same type used on Earth. As a result, Moon’s 
mass wasting features can be grouped as falls, slides, slumps, flows and creeps on the basis of their 
morphology, possible models of emplacement, and sizes of emplaced material (Xiao et al., 2013). 

The focus of this work is detecting large scale landslides and more precise – slumps. They can be 
defined as sudden mass movements of large amounts of rocks and/or fine material travelling for 
short distances (Ritter et al., 2006). Lunar slumps usually occur soon after the formation of the 
impact crater, when impact melt and debris are unstable on the crater walls. The mass movement 
usually is sliding along a concave-upward shape or planar surface. 

Fig. 1. General structure of a simple impact crater (Credits: NASA) 



Geological slope failures are usually related to instabilities in slopes and driven by gravity. There 
is delicate but important difference between predisposing factors and triggering ones. Typically, it 
is possible to determine one or more causes for landslide but only factor that triggers mass 
movement. Predisposing causes can be considered as the factors leading the slope to become 
unstable, hence to failure. On Earth, geological, morphological, physical factors and even human 
activity can lead to the instability of the surface features. So a combination of causes and a single 
triggering event can finally have initiated the mass movement. 

On the Moon the lack of water, the volcanic and tectonic activities lead to different triggering 
factors, compared to the Earth. The large number of meteorite impacts in a variety of sizes is 
considered as triggering factor for mass movements, directly and indirectly. Firstly, impact may 
induce shock waves that may directly disturb materials on slopes forming mass wasting landforms 
(Lindsay, 1976), followed by crushed subsurface bedrock and formation of fractured zones that 
sometimes extend several radii beneath the crater floor (Melosh, 1989). 

2. Suitable data for the analysis 

In the recent years, several space agencies have operating missions orbiting around the Moon, 
carrying on-board measuring instruments helping the scientists to explore Lunar’s surface. Some 
of those missions are: the Lunar Reconnaissance Orbiter (LRO) by National Aeronautics and 
Space Administrations (NASA, United States) and Chang’E missions by the Chinese Nationals 
Space Administration (CNSA, P.R. China). Each of these missions is revised in the following 
sections. 

2.1. Lunar Reconnaissance Orbiter – (NASA)  

LRO has six individual instruments on-board, with the purpose to produce accurate maps and to 
obtain high-resolution images. Among other purposes, these images will be used to assess potential 
future landing sites, to locate lunar resources, and to characterize the radiation environment (Chin 
et al., 2007). The suitable instrument for the desired is the Lunar Reconnaissance Orbiter Camera 
(LROC). The LROC is a combination of two narrow-angle cameras (NAC’s) and a wide-angle 

Fig. 2. Example of a slumped crater wall 



camera (WAC). NAC’s may capture images at ground sample resolution (GSD) of 0.5 m over a 5 
km swath, while the images from WAC may reach, a GSD of 100 m over a 60 km swath. As a 
result, the NAC’s images have been used to produce regional high resolution DTMs, while WAC 
stereo-images to obtain a near-global digital terrain model (DTM) at resolution 100 m x 100 m 
was produced (Global Lunar DTM at 100 m - GLD100). This DTM covers 98.2% of the entire 
lunar surface (Scholten et al., 2012), with average accuracy of elevation better than ±20 m. The 
already mentioned products were also used for the study of landslide features on the lunar surface, 
through the QuickMap™ web interface (http://target.lroc.asu.edu/q3/) and from the LROC’s data 
dissemination web-portal (http://wms.lroc.asu.edu/lroc/rdr_product_select) 

2.2. Chang’E – CNSA 

Chang’E is a series of robotic missions by the CNSA with the objective of lunar surface topography 
mapping and geological survey, as well as the analysis of surface material composition of the 
Moon. In the spirit of the Chinese-Italian collaborative project “Moon Mapping”, data recorded 
by the CCD camera on-board of the orbiter Chang’E 1/2 was used (Scaioni et al., 2016). The 
camera may provide images with GSD between 1.5 and 7 m. Data from Chang’E missions are 
available from Multi-purpose Advanced Tool for Instruments for the Solar System Exploration 
(MATISSE) platform developed by the Italian Space Agency ASI 
(http://tools.asdc.asi.it/matisse.jsp). MATISSE allows to operate with geographic/geometric 
queries for both public and proprietary data (Zinzi et al., 2016). 

3. Chebyshev polynomials for large landslides recognition 

3.1. Introduction 

In general, most of the landslides in impact craters, and in particular slumps, are occurring shortly 
after the formation of the crater’s cavity. Mostly, the predisposing factors are related with soil 
instability, whilst the triggering factor might be moonquakes or new impacts from meteorites in 
the nearby area. Pommerol et al., (2012) proposed a method for detecting lunar landslides in impact 
craters, which is based on the extraction of some crater measurable features (diameter and depth 
at different locations, circularity, slope, etc.) and qualitative characteristics (central peaks, surface 
texture, asymmetries, etc.). This method relies on the assumption of a theoretical model that should 
be applied to compare groups of similar craters and they cannot provide a detailed description of 
the crater’s shape to be analysed for the detection of the surface degradation processes (Mahanti 
et al., 2015). 

In Mahanti et al. (2014) the Chebyshev polynomials are used (Mason & Handscomb, 2010) for 
approximating craters’ cross-sectional profiles. The proposed method can be assumed as data-
driven, due to the lack of a priori model to be assumed. Chebyshev polynomials, in fact are a series 
of orthogonal polynomials, where each of them has a unique and uncorrelated shape with respect 
to any other members of the series. Further, in Mahanti (et al., 2015) the method was proposed to 
be suitable for landslide recognition. Further, in Yordanov et al. (2016) and Scaioni et al. (2018) 
the use of Chebyshev polynomials was proven to be effective with the task of recognition slumps 
in craters’ cavities. 



 

 

3.2. Mathematical background 

Since an in-depth description of the Chebyshev polynomials has already been provided in the 
recent literature (see Mahanti et al., 2014; Yordanov et al., 2016; Scaioni et al., 2018), only a 
general overview is presented in the following. 

Due to the simplicity of the Chebyshev coefficients, Mahanti et al. (2014) suggests the use of Type 
I Chebyshev polynomials. The formulation of polynomials’ basis functions is based on a recursive 
series, where the domain is defined between -1 and +1: 

Tn+1(x) = 2xTn(x) - Tn-1(x);  |x| ≤ 1  (1) 

where Tn (x) is the polynomial piece of order n. The pieces of order 0 and 1 are T0(x) = 1 and 

T1(x) = x, respectively. In order to approximate a function f(x), a linear combination p(x) of the 

basis functions is adopted: 

f(x) ≅ pM(x) + o(xM) = ∑ CnM
n=0 Tn(x) + o(xM)    (2) 

where M is the degree of the Chebyshev polynomial and Cn are the coefficients that modulate the 
amplitude of each basis component. Coefficients Cn are estimated on a Least-squares basis in order 
to fit with real profile data. The residual approximation error (xM) is equal to the sum of the missing 
terms after degree M that are not considered in the approximation. 

As it results from Eq.’s (1) and (2), in the Chebyshev polynomial series even (symmetric w.r.t. 
vertical axis) and odd (anti-symmetric) basis functions alternatively appear. Consequently, the size 
of odd coefficients may express the degree of asymmetry of the approximated crater profile. 

 

4. Application of Chebyshev polynomials 

In general, Chebyshev polynomials are efficient for approximating crater cross-sectional profiles, 
due to their relevant properties that have been already discussed. Therefore, the property used as 
the main assumption for the purpose of landslide recognition is recalled here. 

Due to the orthogonality of the polynomials and the fact that some combinations of different 
coefficients can represent various morphological features inside a crater (such as the presence of 
central peak, terraced walls etc.), one can understand the role of single coefficients in the crater’s 
cross-section approximation process. Therefore, it should be noted that the odd Chebyshev 
polynomials are responsible for the asymmetry in the approximating functions. As well, due to the 



assumed general bowl-shape profile of a crater, one can consider a single cross-section as 
symmetrical w.r.t. its centre. Thus, an analysis of the odd polynomials should detect any 
asymmetry (if present) in the crater cross-sectional profile, which could indicate a presence of a 
large landslide. 

The estimation of the Chebyshev polynomial coefficients is usually carried out on the basis of 
Least-squares (LS) method (Teunissen, 2009). Taking advantage of the above mentioned property, 
Mahanti et al. (2014) demonstrated that lunar crater cross-sectional profiles could be approximated 
by using the first 17 coefficients (M=16) and also that it is possible to describe in a compact 
standard format the profile for classification and inventory purpose. Furthermore, it has been 
verified by Mahanti et al. (2015) that four transversal crater cross-sections are sufficient for 
detecting large landslides in lunar craters. As already mentioned, the main assumption is that a 
strong asymmetrical component in the polynomials can be considered as a signature of a mass 
movement process, needing an independent analysis per each cross-section. 

In this manner, four crater cross-sectional profiles have been extracted from a DEM and 
interpolated using bilinear interpolation. As it can be seen in Fig. 3, all these profiles pass through 
the geographic centre of the crater (according to the lunar ellipsoid) and are aligned along 
directions: West-East (W-E), South-North (S-N), South West-North East (SW-NE), North West-
South East (NW-SE). The length of each section has been extended beyond both rims of up to an 
extent that is approximately 30% of the rim-to-rim distance. Because of the properties of 
Chebyshev polynomials, the distance should be normalized in the range of -1 and +1.  Since the 
analysis is focused on the asymmetrical components of the approximation, it should be ensured 
that there is no influence from side features, such as the general slope of the terrain or even the 
slope of crater’s floor. Knowing which are the Chebyshev coefficients related to possible 
interfering features, their effect can be removed by simply posing those coefficients equal to zero. 
Furthermore, for a case where no slumps are affecting the crater, Scaioni et al. (2018) stated that 
Chebyshev approximation should mainly consist of non-zero even coefficients, while the odd 
coefficients should be close to zero. On the contrary, in the case a slump is present, the odd 

West East 

North 

South 

Fig. 3. Profile directions of craters' cross-sections adopted for landslide detection on the basis 
of Chebyshev polynomials 



coefficients should be significantly different from zero. The general workflow of the analysis is 
shown in Fig. 4.  

4.1. Landslide detection 

In theory, the statistical significance or even testing the size of the odd Chebyshev coefficients 
should provide a straightforward mean for detection an asymmetry in a cross-section, which could 
lead to slump recognition. Actually, after some experiments reported in Yordanov et al. (2016) the 
results obtained from the approach were not satisfying. This outcome could due to some 
interferences of noise or local effects Therefore another approach was adopted by Scaioni et. 
(2018) based on the analysis of the absolute size of Chebyshev coefficients. Firstly, the 
contribution of odd Chebyshev coefficients to the interpolated elevation profiles is computed per 
each points. Then, the Root Mean Square Error (RMSE) of the profile is obtained. The final 
assumption adopted is that in a symmetrical cross-section the RMSE should be small, tending to 
zero, while it should be increasing in the case of an asymmetric profile. 

In this manner, the RMSE values should be compared to a threshold. Two threshold types were 
proposed and already discussed in Scaioni et al., (2018): Empirical Absolute Threshold (EAT) and 
Statistical Adaptive Threshold (SAT). The difference between both is that EAT applies the same 
criterion to all craters’ cross-section under analysis, which is also relevant for the craters under 
consideration. On the contrary, SAT defines a unique threshold per each impact crater. This 
adaptive approach relies on the statistical analysis of all extracted profiles from the same crater. 
Both thresholding criteria obtained very satisfactory results, and in particular when using EAT 
(100 m), a success rate of correct identification of cross-sections with landslides equals 87.7%, 
was achieved. When using SAT (with a threshold equals to k=0.8 times the RMSE of the crater’s 
profile), an accuracy of 83.1% is obtained. It is worth mentioning the fact that both thresholding 
criteria exhibited a “trade-off” effect, meaning that a low threshold value can recognize a section 
as one affected by a landslide (in reality it is true). On the other hand, it can recognize asymmetry 
in a section where no landslide is present. Moreover, a high threshold value may omit an 
asymmetry in a cross-section, which will lead to wrong classification as “no landslide”. 

4.2. Application of the approach using elevation data from different DEMs 

In the previous paper, the proposed approach for landslide recognition was applied to 51 craters 
using elevation data from NASA’s WAC GLD100 with spatial resolution of 100 m x 100 m. Here, 
two additional craters have been analysed, with the difference that elevation data related to them 
has been obtained from different DEM products, namely a DEM derived from CNSA’s Chang’E 
1 (500 m x 500 m) data, NASA’s WAC GLD100, and regional products derived from NASA’s 
NAC with spatial resolution of 2 m x 2 m. 

The two target craters have been chosen in a manner that they share common features as other 
simple craters (Scaioni et al., 2018), meaning a diameter between 7 km and 29 km, the maximum  



slope inside the crater to be less than 35°. Therefore, for this research Hahn A and Herodotus A 

Fig. 4. Workflow of the algorithm adopted to detect the presence of a slump in a cross-
sectional profile of a lunar crater 



craters have been chose. Both are part of families, a group of more impact craters. During the 
selection process, Hahn A has been classified as a crater with landslides while Herodotus A as one 
without landslide. They have been preliminary classified using the visual analysis procedure 
proposed by Brunetti et al. (2015). More in particular, Hahn A has a diameter of 18300 m and 
depth around 3000 m, while Herodotus A is much smaller in diameter (9970 m), yet with depth of 
3000 m. On Figs. 5 and 6, orthophotos of both craters obtained from processing CNSA satellite 
Chang’E 2 data (with spatial resolution of 7 m x 7 m) are reported. 

4.3 Chebyshev approximation 

As mentioned before a total number of 17 coefficients (M=16) is enough for approximating a 
crater’s cross-section. On Figs. 7a and 7b is reported the approximated profile of crater Hahn A 
W-E direction using data from Chang’E 1 and WAC DEMs. After obtaining the Chebyshev 
approximation it is important to exclude the general terrain slope, the external parts of the crater 

Fig. 5. Crater Herodotus A - orthophoto from Chang'E 2 data, downloaded from MATISSE 

Fig. 6. Crater Hahn A - orthophoto from Chang'E 2 data, downloaded from MATISSE 



(meaning the effect of the rims), and the effect of crater’s floor. When all possible interfering 
features are excluded, one should construct the asymmetrical profile, meaning that all even 
coefficients should be set to zero. The final step is the computation of the residuals between the 
real cross-section profile and the interpolated crater. The graphical results of the approximation 
process are displayed in Figs. 7c and 7d.  

4.4 Applying the thresholding criteria 

In this work, for both craters Hahn A and Herodotus A, the already mentioned thresholding criteria 
(EAT and SAT) have been adopted with their best performance values: 100 m for EAT and 
k*RMS, where k=0.8 for SAT. In Fig. 8 the obtained results are shown. 

In the case of crater Hahn A, both of the thresholding methods correctly classified all of the craters’ 
cross-sections. The criteria EAT is distinctively below from the obtained values of profiles W-S 
and SW-NE, and at the same high enough above N-S and NW-SE. Therefore, W-S and SW-NE 
are recognised as cross-sections with landslide and the other two (N-S and NW-SE) as ones 
without any asymmetry. The later fact could be also noted on the elevation profiles in Fig. 9 where 
the profiles in SW-NE and NW-SE directions are compared. 

a) b) 

c) d) 

Fig. 7. Application of the algorithm along crater Hahn A’s cross-section in West-East direction. 
Fig.s a) and c) are obtained with data from Chang’E 1’s DEM; Figs. b) and d) using data from WAC 
GLD100. Figs. a) and b) represents a crater’s profile approximated with Chebyshev polynomials 
using 17 coefficients (M=16). Figs. c) and d) show the asymmetrical profiles reconstructed with 
only odd Chebyshev coefficients; with computed residuals from horizontal line are also displayed, 
Standard deviation have results c) σ=214.89 m and σ=253.51 m for the case d) 



On the other hand, when looking at the results from the analysis of crater Herodotus A, one can 
notice the difference in the recognition outcome from EAT and SAT, as previously reported in 
Scaioni et al. (2018). In the application of EAT with threshold 100 m, just one profile’s (SW-NE 
with Chang’E 1 DEM) standard deviation is higher than the threshold value. In total the success 
rate of EAT is 91.67%, while the SAT with 0.8*RMS drops to 41.67% overall, correct recognition. 
Meaning that only five of the cross-sections have been correctly recognised as ‘without landslide’. 

Looking at the overall standard deviation values from all DEM’s, it can be noticed that they are 
relatively lower than, for example, the ones obtained for Hahn A. This result could be explained 

Fig. 8. Application of the thresholding methods (EAT and SAT) to cross-sections of craters 
Hahn A and Herodotus A, in order to determine the presence of landslides 

Hahn A 

Herodotus A 



by the fact that Herodotus A has been already visually recognised as crater ‘without landslides’, 
therefore the values of residuals for each profile should tend to zero. The values of residuals from 
Chang’E 1’s DEM are relatively higher than the other data sets. This could be due to a complex 
reason combining crater’s diameter (D=9970 m) and the linear sampling distance of 500m. 
Therefore, one may conclude that the spatial resolution of that particular DEM is too sparse for a 
crater of this size. Nevertheless, the analysis of WAC GLD100 exhibits values remarkably lower 
than Chang’E 1’s, also from the regional NAC product. The latter is an odd result even when 
comparing different products’ accuracies. For Chang’E 1’s DEM it has been estimated to have 
horizontal accuracy of 192m and vertical accuracy of 120m (Li et al., 2015), while WACGLD100 
has horizontal accuracy 18m and 2m vertical accuracy, respectively (Scholten et al., 2012). NAC 
local DEM’s obtain even higher horizontally and vertical accuracy (Henriksen et al., 2016), which 
are equal to <10m and 1, respectively. 

5. Discussion and conclusion 

In this work the approach applied for landslide recognition has the purpose to automate a 
straightforward procedure to differentiate craters affected by landslides from the ones that were 
not. It is less time-consuming and more objective than other procedures proposed in the literature. 
The basic advantages of the method have already been discussed in previous publications 
(Yordanov et al., 2016; Scaioni et al., 2018), where the obtained results were very satisfying using 
both thresholding methods (EAT and SAT). Where applying the EAT thresholding criterion 92.8% 
of the cross-sections, affected from slumps, were correctly recognised. Nevertheless, there are 
options for improvement. Here, a preliminary check whether analyses using data sets from 
different DEMs could yield more satisfactory results, have been carried out. It has been observed 
that high-resolution data sets could produce high deviations from the approximations, of course 
less that will the low resolution Chang’E 1’s DEM. 

 

 

 

 

a) b) 

Fig. 9. Approximation plots with only asymmetrical components and computed residuals to the 
horizontal lines for crater Hahn A: a) SW-NE direction and b) NW-SE direction 
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ABSTRACT 

The data acquired by the Inference Imaging Spectrometer (IIM) sensor on board of the Chinese 
Chang'E-1 mission can be used to infer important information on the Moon surface composition. In 
this work, the multi-path and multi-reflection phenomena occurring on its rugged surface recorded at 
the IIM rather coarse resolution (200m) are described by means of nonlinear spectral analysis based 
on the p-linear mixture model (pLMM) and the p-harmonic mixture model (pHMM). The analysis by 
pLMM and pHMM provides details on the materials and elements on the Moon surface, and their 
abundance distribution and fractional cover can be properly estimated without any a priori 
information on its chemical composition. Mineral map extractions using pLMM and pHMM have been 
considered and compared with those obtained by means of the modified partial least squares 
regression (PLSR) methodology, assessing the reliability and accuracy of the pLMM- and pHMM-
based approach.  

INTRODUCTION 

Recent advancements in remote sensing technology have allowed important improvements in Earth 
and planetary surface observations [1]. High spectral resolution in the records acquired by probes 
and sensors has allowed to better understand the mineralogical structure of the considered targets. 
As the effort required to obtain surface data and samples from extraterrestrial bodies is huge, 
planetary research and exploration can take particularly advantage of remote hyperspectral sensing 
[2,3]. As a matter of fact, the surface characterization can be enhanced by an accurate map of the 
surface composition extracted from remotely data acquired by spectrometers, without the need to 
reach the surface [3,4].  

Among extraterrestrial bodies, the Moon is a very important element for many different reasons, 
especially in terms of geophysical characteristics. In fact, such as the Earth, Moon is a differentiated 
planet, and the deposit and evolution of magmatic lithologies, which include mafic minerals (i.e., 
minerals enriched in iron and magnesium, such as olivine, orthopyroxene and clinopyroxene), form 
the majority of its crust [5-7]. The knowledge of the specific mineral assemblages and their major 
element chemistry can be used to estimate the geological mechanisms that formed the materials at 
the surface and near-surface through various mantle processes and crystallization conditions. 
Furthermore, the exploration of the surface composition and mineralogy can describe the Moon 
geologic history, delivering important details on its planetary thermal and chemical evolution [8].   

The study of the Moon surface by means of hyperspectral data sets has been typically carried out 
searching for modal and chemical signatures of peculiar surface rocks. In that sense, deconvolution 
methods (e.g., modified Gaussian model (MGM) and partial least squares regression (PLSR)) are 
used to retrieve a reliable estimate of the abundances of each mineral in a given region [7, 9, 10]. 
The accuracy of these techniques is very high: however, they suffer from a large computational 
complexity, particularly relevant in case large-scale datasets are considered.  

Another option is the use of spectral unmixing techniques, that are significantly less demanding from 
the computation point of view [1, 11-13]. Spectral unmixing aims at separating the target pixel 
spectrum into a set of constituent spectral signatures (endmembers) combined by means of a set of 
fractional abundances. Nonlinear spectral unmixing have been proved to be able to achieve accurate 



 

characterization of any surface, since these algorithms are able to effectively describe spectrally and 
geometrically complex scenarios [1, 11-14].  

In this paper, we want to report that higher order nonlinear spectral unmixing methods provide 
accurate characterization of the mineralogical composition of the Moon surface. Indeed, a reliable 
distribution of the minerals’ abundances can be efficiently obtained by higher order mixture modeling. 
Specifically, the outcomes of spectral unmixing are used to estimate the minerals in four test areas. 
A comparison of these values with the outcome of the well established PLSR method is used to 
validate the experimental results. The outcomes of the proposed investigation show that nonlinear 
spectral unmixing is able to provide significant information about the Moon surface composition.  

METHODS 

A precise characterization of the elements in the local instantaneous field-of-view can be retrieved 
by means of unmixing techniques, since their outcomes can describe the interactions among the 
basic materials in the area [11-14]. Indeed, spectral unmixing methods are not sensitive on statistical 
distribution parameters: in fact, the endmembers spectra are typically the only input for the inversion 
process carried out over the mixture models. Moreover, it is very well known that absorption 
characteristics vary nonlinearly according to the abundance distribution. Hence, it is no surprise that 
relevant information on the physical-chemical composition of the materials on the Moon surface can 
be obtained by nonlinear spectral unmixing methods.  

 

 
Figure 1. Simplified representation of the acquisition of mixed spectra on extraterrestrial surfaces 

 

Furthermore, extraterrestrial surfaces (which are typically characterized by intimate mixtures – see 
FIGURE 1) can be properly described by higher order nonlinear mixture models, able to consider 



 

and address several features without a priori information such as grain size and illumination angles 
[1,3,5,7,12]. The general expression of these models can be written as follows: 
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that, if p=1, (1) identifies the classic linear mixture model (LMM), whilst p=2 leads to the general 
expression of the bilinear mixture model [1].  

In order to understand the nature of the endmember combination that delivers the given target 
observation spectral signature, each ω  term must be computed. Indeed, a linear system involving 
the original hyperspectral data and the endmembers’ spectra delivered by an endmember extraction 
algorithm (EEA) can be used to estimate the coefficients driving the nonlinear combination in (1), if 
the polytope decomposition (POD) of the signatures is employed [11,12]. Further, a more accurate 
estimation of the endmember abundances can be obtained by properly combining the linear and 
nonlinear coefficients that have been retrieved. In fact, a global metric based on the polytope 
representation can be used to this scope [11]. Specifically, the spectral representation of the 
reconstructed pixel lŷ  can be written as a function of the lω  as extracted according to the 
overdetermined linear programming optimization, as follows: 
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where 
nrlϕ  is the overall contribution of the r-th endmember to the reconstruction of the l-th pixel over 

the n-th band. Hence, it is possible to think to 
nrlϕ  as the compression/expansion factor of the r-th 

endmember over the n-th direction in the N-dimensional space. In fact, as the relevance of the r-th 
endmember in contributing to the reconstruction of the l-th pixel increases, the amplitude of 
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to the reconstruction of the l-th pixel. In fact, its volume is defined as 
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aforesaid endmember, so it can provide a valid and reliable characterization of r-th endmember 
aggregate abundance.   

Thus, the r-th endmember abundance rlâ  can be defined as:  
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which fulfills the sum-to-one and the non-negativity constraint [1]. Furthermore, it is a more stable 
and reliable metric in order to get an evaluation of the presence of each endmember in the scene 
[11-14]. Specifically, rlâ  represents an aggregate metric to estimate the abundance of the r-th 
endmember in a pixel.  

As previously mentioned, signals that are remotely sensed by spectrometers can be affected by 
geomorphological and geophysical properties of the considered scenarios. Thus, it leads to a 
cumbersome acquisition of univocal and well defined spectral signatures of minerals over 
extraterrestrial bodies’ surface. Therefore, several spectra identifying minerals with different 
geophysical features are used as endmembers’ library, so that a thorough overview of the actual 
occurrence of each element in the considered scene can be achieved. Indeed, the overall 
endmember library { } RrrmM ,...,1==  can be written as 𝑀𝑀 = ⋃ 𝑀𝑀𝑠𝑠
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identifies the set of 

spectral signatures which can be associated with the s-th specific mineral compound. Then, it is 
possible to retrieve a thorough estimate of the actual abundance of the s-th mineral over the l-th 
pixel (namely slα̂ ) as follows: 
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These metrics are used to analyze the datasets described in the following Section.  

DATASETS AND RESULTS 
The datasets that have been considered are provided by the IIM sensor on Chang’E-1 satellite. The 
IIM is a Sagnac-based spatially modulated Fourier transform imaging spectrometer on-board the first 
lunar satellite of China, Chang’E-1 [9,10,15]. It mapped the lunar surface with a swath of 25.6 km 
and spatial resolution of 200 m from a polar orbit of 200 km altitude. Within the wavelength range of 
IIM, i.e., 480.9–946.8 nm, this sensor has 32 continuous channels with a theoretical spectral 
resolution of 330 cm-1 (variable from the finest case of 7.5 nm at 480 nm to the widest value of 29 
nm at 946 nm) according to Sparrow’s criterion. The spectral resolution and wavelength position in 
the laboratory test with the gas laser and semiconductor laser shows that the actual resolution is 
about 355 cm-1, and maximal shift of 2.48 nm at 831.2 nm for the wavelength position. The signal–
to-noise (SNR) of the in-flight data, was evaluated with a simple mean/standard deviation method. 
Then, only 26 bands are kept to proceed with investigation [9]. 

 

 
Figure 2. Moon surface portion considered in this work. The blue, yellow, red, and green boxes respectively 

identify the location of the crater, corrugated, flat, and mixed areas that are shown in Figure 3. 

 

We focused our attention on a wide region of Moon surface explored by means of IIM records 
(FIGURE 2). The selected area is located around Laplace A and Helicon craters in Sinus Iridum and 
Mare Imbrium. This portion of Moon surface is especially interesting because it identifies a general 
flat terrain, which can be eventually used as landing site for future missions. Specifically, we 
analyzed four zones in this scenario that are characterized by different geomorphic properties, 



 

including a crater, a corrugated area, a flat plain, and a “mixed” area (i.e., where mountains and 
plains are mixed). These scenes are shown in FIGURE 3.  

 

 
Figure 3. Four areas with different geomorphic properties that have been analyzed: “crater”, “corrugated”, 
“flat”, and “mixed”. Their location on the Moon surface is reported respectively by the blue, yellow, red, and 

green boxes in Figure 2. 

 

Higher order nonlinear spectral unmixing models based on pLMM and pHMM were considered. 
Moreover, we provided in input to the spectral unmixing schemes the spectral signatures identifying 
six major elements on Moon surface, i.e., FeO, TiO2, MgO, Al2O3, CaO and SiO2. In order to 
evaluate the actual ability of this approach to detect and quantify the abundance distribution of these 
elements, we compared the retrieved abundance maps with those obtained by considering the PLSR 
framework in [9]. As an aggregated identifier of the mapping quality, the root mean square error 
(RMSE) of the abundances estimated by PLSR in [9] and the corresponding quantities calculated 
according to the outcomes of the spectral unmixing techniques was considered.  

FIGURES 4 and 5 show the RMSE distribution obtained over the four areas for each element when 
pLMM- and pHMM-based unmixing is employed respectively, where p spanned from 1 to 12. Please 
consider that p=1 identifies the results achieved by classic LMM-based spectral unmixing. 
Experimental results report that the use of higher order nonlinear mixture models provides higher 
accuracy in estimating the abundance of all the six major elements than linear or bilinear models. 
This result is somehow expected, given the capabilities of higher order nonlinear models to track 
sophisticated mixtures in spectrally and geometrically complex scenes. Specifically, the 8-LMM and 
9-HMM models are able to obtain the best abundance estimates, and the blurriness produced by 
linear and low order nonlinear mixture models is dramatically reduced.  



 

 
Figure 4. Root mean square error (RMSE) distribution obtained over the four areas for each element when 

pLMM-based unmixing is employed, with p spanning from 1 to 12. 

 



 

 
Figure 5. Root mean square error (RMSE) distribution obtained over the four areas for each element when 

pHMM-based unmixing is employed, with p spanning from 1 to 12. 

 

FIGURES 6 and 7 show the results obtained using 8-LMM and 9-HMM, respectively. The approach 
based on non-linear spectral unmixing is able to accurately track the elements’ distribution, since the 
produced maps do not differ significantly from the PLSR outcomes, as previously discussed for 
FIGURES 4 and 5. Specifically, it is apparent that the error obtained for most of the considered 
endmembers is less than 10%, which represents a robust result from a statistical point of view. 
However, the average abundance error for SiO2 is greater than 30%. This effect can be explained 
taking into account the chemical properties of SiO2 itself. Specifically, SiO2 shows a non-
orthorombic crystalline structure, which implies a very fine grain size of the SiO2 minerals on the 
surface. These properties cause strong nonlinear interaction on the reflectance contribution for the 
SiO2 minerals at a macroscopic scale. Thus, PLSR estimates might not be very accurate, since that 
framework definitely relies on the linearity of the minerals’ reflectance [9].  

 



 

 
Figure 6. Abundance distribution obtained over the four areas for each element when 8LMM-based 

unmixing is employed. 

 

 
Figure 7. Abundance distribution obtained over the four areas for each element when 9HMM-based 

unmixing is employed. 

 



 

CONCLUSIONS 

In this chapter, a novel approach to extracting mineralogical composition of extraterrestrial planets 
by means of higher order nonlinear spectral unmixing has been considered and discussed. The 
proposed scheme is able to provide accurate estimations of mineral abundance distributions on the 
Moon surface. Furthermore, it provides detailed information on the surface geophysical composition. 
Experimental results show that the proposed approach is actually able to extract element maps 
highly correlated to reference mineral distributions. Future works will focus on exploiting the results 
obtained from the proposed method to achieve higher-resolution high-accuracy quantification of the 
elements. Moreover, relevant information on the origins on the elements distribution on Moon can 
be retrieved by fusing the outcomes of the architectures introduced in this chapter and other data on 
the geomorphic conditions of the surface, such as the digital elevation models (DEMs) of Moon that 
have been produced by means of the other sensors carried by Chang’E-1 satellite. FIGURE 8 reports 
an example of the visualization of the element abundance distribution estimated by using 8LMM-
based spectral unmixing on the DEM of the crater region. Hence, the proposed study can play a key 
role in understanding and quantifying the actual impact and relevance of the physical phenomena 
occurring on Moon surface.   

 

 
Figure 8. Visualization of the element abundance distribution obtained over the crater area when 8LMM-

based unmixing is employed according to the digital elevation model (DEM) of the region. 
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First geologic interpretation of Krieger crater 

C. Collu1, S. Podda1, V. Demurtas1, F. Perseu1, M.T. Melis1 
 
 
 
1. Study area  
 
The crater Krieger is a complex crater located in the Oceanus Procellarum, the most wide mare 
in the near side of the Moon. The geological and morphological characteristics of this crater 
were studied and summarized in a geomorphologic map of the area of interest, in scale 1:200 
000.  
The study area (fig. 1) is located in the Aristarchus region, a complex volcanic district in the 
eastern margin of the Oceanus Procellarum which includes a great amount of different 
geomorphological features like basaltic flows, pyroclastic deposits, volcanic constructs, domes 
and sinuous rilles (Zisk, et al., 1977).  
 

 
Figure 1. WAC (LRO) image of the Aristarchus region (NASA, QuickMap LROC, 2018). 
The main features are the Aristarcus Plateau and the Montes Harbinger district. The Krieger 
crater is located in the NE part of the region. 

 
2. Geological setting 
 
The geology of the Oceanus Procellarum was studied by several authors, mainly on the basis 
of crater-count techniques and multispectral analysis, identifying numerous basaltic units of 
different ages. One of these studies (Zhang, Zou, Zheng, Fu, & Zhu, 2014) mapped the mare 
materials by the spectral analysis of lunar soil maturity variations, TiO2 and FeO contents (fig. 
2). In this work the study area is divided into two different basaltic units, the PL7 (in the 
southern) and L4 unit (in the northern). Both of them are low in titanium and have the same 
iron content, but they show a different amount of olivine and/or soil maturity. In fact, the L4 
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unit is formed by a olivine-rich basalts and more recent soil materials in comparison with the 
PL7 unit. It suggest a most recent origin for the L4 unit compared to the other one. 
 

 
Figure 2. An extract of the  Zhang et al.’s Map of the Oceanus Procellarum spectral 
characterization. Basaltic units’ boundaries are drawn with blue and black lines (Zhang, Zou, 
Zheng, Fu, & Zhu, 2014). 

 
 
2. Data and Methodology 
 
In this work the geomorphologic study on the area of interest was based on: 
• the photo-interpretation of a mosaic made by 20 NAC images (Narrow Angle Camera) 
from the LRO mission, with a resolution of 1.5 m/pixel; 
 
• the analysis of the SLDEM2015 digital elevation model, created by the combination of 
Lunar Orbiter Laser Altimeter (LOLA) and SELENE (Kaguya) data with a spatial resolution 
of 60 m/pixel and a vertical accuracy of 3-4 meters; these data were used to create a topographic 
map and several topographic profiles; 
 
• the analysis of multispectral data taken by the Moon Mineralogy Mapper 
(Chandrayaan), that have a spatial resolution of 140 m/pixel and a spectral resolution of 20-40 
nm; the spectral characteristics of the lunar surface were pointed out by a RGB composite map 
of three parameters (1 µm and 2 µm absorption bands and the reflectance value at 1.58 µm) and 
a SAM classification map, made by collecting end-member spectra identified in the study area. 
 
3 Results 
 
The Krieger crater has a diameter of 24 km and shows on the southern wall a simple crater 
called Van Biersbroeck, of 11 km in diameter. A sinous rille, Rima Krieger, rises from the 
western wall. Two smaller craters occur in the eastern corner of the study area, Rocco and Ruth 
(fig. 3). 
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Figure 3.  WAC image of the study area (NASA, QuickMap LROC, 2018). 

 
Analyzing the Krieger from the morphologic point of view, it shows a complex structure with 
asymmetrical walls, in particular between the western and the eastern one (fig. 4).  
 

 
Figure 4. West-East topographic profile of the Krieger crater. The western wall appears lower 
than 1000 meters amount in comparison with the eastern one (Basemap: WAC image, LROC 
data; DEM: SLDEM2015, LOLA-SELENE data) . 

 
The maps produced by the spectral characterization of the study area (fig. 5) shows a 
compositional differentiation in the considered part of lunar surface.  
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Figure 5. RGB composite map of the three parameters (1 µm and 2 µm absorption bands, red 
and green channels respectively, and the reflectance value at 1.58 µm in the blue channel) on 
the left, and a SAM classification map (in the centre), made by collecting end-member spectra 
of the area (shown on the right).  
 

 
A clear differentiation can be notice between the northern part of the area and the southern one, 
which is identfied by a basaltic material with a lower olivine content. It may suggest that the 
two areas were interested by two different volcanic events. Generally olivine-rich basalts have 
also a high-titanium content and are younger in respect of the other ones (Staid, et al., 2011). 
So it’s reasonable to think that the southern basalts are older than the northern ones, also 
according to other works (Boyce & Jonnson, 1978; Whitford-Stark & Head, 1980). 
 
The results of these analysis showed different types of materials and morphological variations 
that have been interpreted and mapped on the geomorphologic map of the study area.  
The identified geomorphologic units were referred to three lunar eras: Pre-Imbrian, Imbrian 
and Eratosthenian. Most of the study area was composed by Imbrian materials, whereas the 
simple crater-deposits were attributed to Eratosthenian. An extract of the legend and a sketch 
map of the geomorphologic map of the Krieger crater are reported in fig. 6.  
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Figure 6.  Sketch map and an extract of the legend of the geomorphologic map of Krieger 
crater. 
 

 
The pre-Imbrian units are characterized by high values of reflectance, so they had been 
interpreted as highland-materials, older than Imbrian basaltic volcanism. 
Imbrian period was interested by basaltic flows and the impact-cratering process that created 
the Krieger (Wilhelms, Mccauley, & Trask, 1987). The basaltic flows identified are three: 
• the substrate over which Krieger crater formed, consisting of basalt with low olivine 
and titanium content (PL7 unit in Zhang et al’s work); 
• olivine-rich basalts, that cover part of the Krieger floor and the western area of the mare; 
the source of this volcanic event could be the impact-fracture system on the Krieger floor; 
• olivine and titanium-rich basalts (L4 unit in Zhang et al’s work), which extend in the 
nothern part of the study area and interest also the surrounding Krieger ejecta. 
 
Other imbrian deposits are associated with the impact-cratering process of the Krieger (ejecta, 
dikes, etc.). 
 
The basaltic volcanism ceased in the Eratosthenian, therefore the only materials associated with 
this period are the crater deposits of Van Biesbroeck, Rocco, Ruth and other smaller craters. 
 
The complex morphologic features of the Krieger are probably caused by several types of 
degradation processes, like the later volcanism occurred in the proximity of the crater and the 
Eratosthenian impacts, especially Van Biesbroeck’s collision.  
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In conclusion, further studies are necessary to better define the lithologies and the 
geomorphologic processes, in particular quantitative analysis of muntispectral data, to identify 
mineralogic mixtures that cause the morphologic features of the reflectance spectra.  
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Detection, classification and mapping of lunar rilles 

 

S. Fiorucci1, M. T. Brunetti2 
 
 

1. Introduction 
 
Lunar rilles are any of the long, narrow depressions on the surface of the Moon that resemble 
channels. These structures have different characteristics, which are related to their origin. In 
the following a classification of the lunar rilles in different groups with similar morphometric 
features and likely the same formation mechanisms is proposed. 
 

2. Study area 
 
The detection, classification and mapping of lunar rilles has been achieved in the Sinus 
Iridium study area, which is located in the 270°W 360°E – 0°N 60°N Moon quadrant (Figure 
1). The area measures 105 km2. Figure 2 shows the mosaic of the Sinus Iridium study area 
obtained with Chang’e2 raster images. 

 

Figure 1. Stereographic view of the Moon’s surface (LROC); the red square indicates the 
area we have focused on (credit: NASA/Goddard Space Flight Center/Arizona State 
University). 
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Figure 2. Mosaic of the Sinus Iridium study area (Chang’e2). 

3. Methods  
 
A DEM (Digital Elevation Model) from Lunar Orbiter Laser Altimeter (LOLA, Smith et al., 
2010) with a resolution of 6 m/pixel (Figure 3a), monochrome images taken by the Wide 
Angle Camera (WAC, Robinson et al., 2010) of the Lunar Reconnaissance Orbiter Camera 
(LROC, Chin et al., 2007) (http://www.lroc.asu.edu/) with a resolution of 100 m/pixel 
(Figure 3b) and raster images from Chang’e2 with a resolution of 7 m/pixel have been used 
to identify and map the rilles. 

 

Figure 3. (a) A cut out of the DEM used. (b) LROC raster image of the same area (credit: 
NASA/Goddard Space Flight Center/Arizona State University).  
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Lunar rilles include generic sinuous rilles and additional structures that were classified and 
mapped to highlight the main differences with the sinuous rilles and to provide a comparison 
to distinguish one from the other. The mapped structures are grouped and classified in: 

1. Generic sinuous rilles (SR) 

2. Cracks on lava deposits (CL) 

3. Surface lava flows (LF) 

4. Subsurface lava tubes or catena (crater chains, CC) 

5. Tectonic structures (TS) 

Generic sinuous rilles (SR) 

Generic sinuos rilles (Figure 4a and 4b) exhibit varying degrees of sinuosity with parallel, 
laterally continuous walls. Generally, SRs avoid topographic obstacles. These SRs can be 
better defined and associated to a specific origin after a detailed morphometric analysis and a 
regional interpretation (Hurwitz et al., 2013). 

  

 

Figure 4. The yellow arrows in (a) and (b) indicate examples of SR (credit: NASA/Goddard Space 
Flight Center/Arizona State University). 

Cracks on lava deposits (CL) 

Cracks on lava deposits (Figure 5a and 5b) are branched linear or arcuate patterns with a low 
degree of sinuosity and a clear angular and sub-angular pattern. 
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Figure 5. The yellow arrows in (a) and (b) indicate examples of CL (credit: NASA/Goddard Space 
Flight Center/Arizona State University). 

Surface Lava Flow (LF) 

Surface Lava Flows (Figure 6a and 6b) are shallow leveed channels exhibiting varying 
degrees of sinuosity. These features are often associated to potential source vents. The width 
of the channel decreases with the distance from the source vent. 

   

Figure 6. The yellow arrows in (a) and (b) indicate the potential source vents of the two LF (credit: 
NASA/Goddard Space Flight Center/Arizona State University). 

Subsurface lava tubes or catena (crater chains, CC) 

Subsurface lava tubes (Figure 7a and 7b) are chains of craters (catena) due to multiple 
collapses along a subsurface lava tube. 
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Figure 7. The yellow arrows in (a) and (b) indicate examples of CC (credit: NASA/Goddard Space 
Flight Center/Arizona State University). 

Tectonic structures (TS) 

Tectonic structures (Figure 8a and 8b) have straight or gently arcuate parallel walls. 
Generally, they are not continuous but composed by cut strokes. The depression can be 
partially covered by the lava erupted and flowed back (drain back process). they have a linear 
trend. Generally, a main tectonic structure is associated to a family composed by 
lineaments/discontinuities as steps on the surface (thrust faults). In other cases, they can be 
graben and they can be straight or arcuate parallel walls bounded by steep, inward-dipping 
normal faults. Generally, they cut across topographic obstacles. 

  

Figure 8. The yellow arrows in (a) and (b) indicate examples of TS (credit: NASA/Goddard Space 
Flight Center/Arizona State University). 
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4. Results  
 
Using high-resolution images of Chang ‘e2 we 74 polygons and 112 curves have been 
classified and mapped in the Sinus Iridium area (Figure 9). For the mapped structures, a chart 
with the most relevant morphometric parameters is available.   

 

 

Figure 9: Lunar rilles mapped in the Sinus Iridium study area. 
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Morphometric analysis of sinuous rilles on the lunar near side 

S. Podda1, C. Collu1, V. Demurtas1, F. Perseu1, M.T. Melis1 
 
 
 
1. Introduction  
 
Lunar sinuous rilles are enigmatic features that would represent the remnants of shallow lava 
channels or subsurface lava tubes collapsed.  
These channels are characterized by highly varying depths and widths with parallel, laterally 
continuous walls, that exhibit varying degrees of sinuosity (Figure 1). The exact mode of 
sinuous rilles formation is still debated, particularly in regards to whether these channels 
originated by constructive or erosive processes. In this chapter a morphometric analysis of 
sinuous rilles is proposed because it can facilitate a better understanding of how these features 
formed (Hurwitz et al. 2013). 
 

 
Figure 1. The image shows some examples of lunar sinuous rilles indicated by the red arrow. 

 
2. Study area 
 
The study area is located on the lunar near side in the 0°E 90°E - 0°N 60°N Moon quadrant. It 
is characterized by numerous maria that represent the main areas of sinuous rilles formation 
(Figure 2). 
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Figure 2. The image on the left shows the orthographic projection of the lunar near side 
(QuickMap - LROC- ASU), the red square indicates the study area visible on the right (WAC 
Global Morphologic Map). 

 
 
2. Methodology and results 
 
Sinuous rilles of varied morphologies have been identified on the area, using the WAC Global 
Morphologic Map and the SLDEM 2015 (Figure 3). The WAC Global Morphologic Map 
represents the mosaic of the images taken by the Wide Angle Camera (Lunar Reconnaissance 
Orbiter Camera) with a resolution of 100 m/pixel (Robinson et al. 2010). The SLDEM2015 is 
a global lunar DEM deriving from the combination of Lunar Orbiter Laser Altimeter data and 
Selenological and Engineering Explorer (SELENE or Kaguya, operated by the Japan Aerospace 
exploration Agency) data. The SLDEM2015 has a resolution of ~ 60 m/pixel and a vertical 
accuracy of ~ 3 - 4 m (Barker et al. 2015). 
 

 
Figure 3. The images represent the study area, on the left there is the quadrant of the WAC 
Global Morphologic Map, on the right the quadrant of the SLDEM2015 is visible. 

 
 
A photo interpretation work and mapping (Figure 4) of sinuous rilles have been made with these 
data, considering that the channels tend to avoid topographic obstructions. 
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Figure 4. Lunar sinuous rilles mapped in the study area. 

 
Subsequently measurements of morphological parameters (width, depth, length, sinuosity index 
and regional slope) have been collected for each sinuous rilles to characterize the range of 
channels dimensions and to identify morphological potential trends. 

Width 
Sinuous rille width represents the distance between the top of the two parallel walls of each 
channel measured perpendicularly to the propagation direction of the lava flow (Figure 5). 
Width measurement has been acquired at several points of each sinuous rille, and then all the 
values have been averaged to get a characteristic width of each sinuous rille. 
 

 
Figure 5. The image shows how the width measurements have been acquired; the red line 
indicates one of the several measurement points. 
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Depth 

Sinuous rille depth is defined as the difference of altitude between the terrain surrounding the 
channel and the bottom of the channel. Depth value has been measured at several points along 
the length of each sinuous rille, and then the measurements have been averaged to get a 
characteristic depth of each sinuous rille. 

Length 
Sinuous rille length is defined as the average length of the two walls. Each wall has been 
mapped individually (Figure 6) and the calculated lengths for each one have been averaged. 
 

 
Figure 6. The image represents an example of length measurement. The walls of each sinuous 
rille have been mapped individually to calculate their length. 

 
Sinuosity index 

Sinuosity index is a dimensionless quantity derived by the ratio of the channel length and the 
distance (straight line) between the end points of the channel. Sinuosity values for terrestrial 
channels typically range from 1 to 5. 

 
Regional slope 

The regional slope represents the slope (degrees) of the terrain on which sinuous rilles formed 
(Hurwitz et al. 2013). This value has been calculated as the ratio of the difference in elevation 
between the source area and the terminus area of each sinuous rille and the distance (straight 
line) between the two areas. 
 
Other information about the sinuous rilles like latitude, longitude, azimuth and the rilles 
location have been collected. In Figure 7, in a table (Figure 7) in addition to the morphological 
measurements. 
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Figura 7. The image shows one of the several sinuous rilles mapped in the study area; below 
the image there is the table with all data measured on this sinuous rille. 

 
A morphometric analysis (like the one just described) of several sinuous rilles with a regional 
interpretation are necessary to define the origin and the characteristics of the sinuous rilles. 
 
 
Bibliography 
 
Barker M. K., Mazarico E., Neumann G. A., Zuber M. T., Haruyama J., Smith D. E., (2015), 
“A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE 
Terrain Camera”, Icarus, pp 1-10;   
 
Hurwitz D. M., Head J. W., Hiesinger H., (2013), “Lunar sinuous rilles: Distribution, 
characteristics, and implications for their origin”, Planetary and Space Science, pp 1-38;  
 
Robinson M.S., Brylow S.M., Tschimmel M., Humm D.,. Lawrence S.J, Thomas P.C., Denevi 
B.W., Bowman-Cisneros E., Zerr J.,  Ravine M.A., Caplinger M.A., Ghaemi F.T., Schaffner 
J.A., Malin M.C.,  Mahanti P., Bartels A.,  Anderson J., Tran T.N., Eliason E.M., McEwen 
A.S., Turtle E., Jolliff B.L.,  Hiesinger H., (2010), “Lunar Reconnaissance Orbiter Camera 
(LROC) Instrument Overview”, Springer, pp 81-124; 

Rille 
Number

Lat 
(center)

Long 
(center)

Azimuth Width (m) Depth 
(m)

Length (m) Length (m) Length (m) Length (m) Sinuosity
Slope 

surface 
(degrees)

Rille Location

mean mean Wall A Wall B mean
Rilles 
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Introduction to 3D visualization of the map atlas 
Angelo Zinzi  

(Space Science Data Center – ASI) 
 
Abstract 
 
The possibility of exploiting the data acquired by different instruments with a 3D visualization is 
recently becoming a mandatory requirement for a great part of space missions (e.g., Zinzi et al., 2018). 
In this context, we adapted MATISSE (Multi-purpose Advanced Tool for the Instrument for the Solar 
System Exploration – Zinzi et al., 2016) to the needs of the Moon Mapping project, by adding to its 
database observations and high-order outputs coming from Chang’e 1 and Chang’e 2 (in the following 
CE1 and CE2, respectively) Chinese missions to the Moon. This task also required the development 
of ad hoc software to read and project the data, mostly formatted compliant to the PDS (Planetary 
Data System) standard. 
The possibility of analyzing the data with an effective three-dimensional perspective added value to 
their scientific content, thus emphasizing some key aspects, but also gave an easy and “smart” access 
to the data to non-professional users, one of the main target of this project. 
 
1. Introduction 
 
MATISSE is the web-tool developed by the Space Science Data Center of the Italian Space Agency 
(SSDC-ASI) in order to access, visualize and analyze data from planetary exploration missions (Fig. 
1). Thanks to its modular structure, it can be easily adapted to different types of observations and 
upgraded with new data. Therefore, it came straightforward to use it inside the Moon Mapping project 
as the ideal tool for searching, analyze and display data from the CE1 and CE2 instruments. 
For the Moon Mapping project, the tool has been mostly used by people pertaining to Topics 2 and 3 
of the project, both related to the surface characteristics of the Moon studied by means of visible 
cameras and infrared spectrometers. 
Furthermore, the possibility of obtaining captivating and easy to understand visualizations of lunar 
surface, perfectly suited for people non directly involved in scientific research (e.g., students), made 
the MATISSE tool one of the fundamental pieces of the Moon Mapping project.  
Its main usage has been related to search observations inside the database by using geographical 
metadata (i.e., latitudes and longitudes) and then projecting and visualizing them. 
 



 
Fig. 1: The MATISSE homepage (https://tools.ssdc.asi.it/matisse.jsp) 

 
2. Ingestion of Chinese data in MATISSE 
 
MATISSE ingests five different kinds of data from the Chang’e missions:  

• visible cameras (CCD) from both CE1 and CE2; 
• infrared imaging spectrometer (IIM) from CE1; 
• Digital Elevation Model (DEM) computed on the basis of CE1 data; 
• Ortophoto (DOM) from CE1 and CE2; 
• Global Elemental Abundance Maps (EAM) from CE1. 

All these data, together with their observational geometries, were provided in PDS format, but, since 
a single, pre-designed, software cannot read this standard, the first task to be completed was the 
development of software capable of correctly opening the files and, subsequently, their addition to 
the MATISSE pipeline. 
Single observations (i.e., CCD and IIM) were originally produced exactly as they were acquired, 
therefore, without a standard projection; on the contrary, high-order products and maps have been 
delivered to MATISSE already projected by the Chinese data processors. 
The output of the reading procedure is passed to the MATISSE pipeline and then the process is exactly 
as accurately described by Zinzi et al. (2016) and Zinzi et al. (2018), ending with both 2D (ENVI, 
GeoTIFF, FITS) and 3D (Paraview) outputs. 
Three-dimensional outputs are generated by means of VTK libraries so that they can be opened with 
Paraview free software: this is a powerful and easy solution suited for both scientific and outreach 
aims. The possibility of further process the data with both predefined and Python scripting filters 
makes it a perfect tool for science analysis. On the other hand, its straightforward 3D visualization 
and usability make it easy to use for non-professional people (Fig. 2). 
 



 
 

 
Fig. 2: Examples of 3D visualization of the Moon with MATISSE 

 
3. Examples of 3D visualization uses in educational programs 
 
Apart from its utility as a research tool, MATISSE can be fruitfully become part of educational 
projects. 
Its user-friendly interface and its captivating final products are, indeed, extremely fascinating for non 
professional users looking for real solar system exploration data. 
This approach has been already used in a series of projects, both in Italy and in the United States, 
clearly demonstrating that also lightly-trained high-school students can use MATISSE to replicate 
real scientific studies. 
In particular Italian students involved in a ministerial educational program used MATISSE after a no 
more than 2 hours of training during their visit at the Italian Space Agency HQ in Rome. Their goal 
was to discriminate the composition of dark region of the asteroid Vesta using the data from the VIR 



infrared imaging spectrometer onboard the NASA Dawn mission (Fig. 3), as already done by 
Palomba et al. (2014). 
The same activity is now officially part the curriculum of the “Introduction to Modern Astro-Plasma 
Physics” course of the East Windsor Regional School District in Hightstown, NJ (USA). 
 

 
Fig. 3: MATISSE output page for the educational projects involving VIR-Dawn data of asteroid 

Vesta 
 
4. Using MATISSE for the Moon Mapping interactive atlas 
 
Thanks to these features, MATISSE could certainly play a key role as part of the interactive atlas of 
the Moon originally thought to be part of the project output. 
The software architecture is ready to ingest such a task and the project will become operative as soon 
as Chang’e data part of the Moon Mapping project will become of public domain. 
In this way people from around the world would use MATISSE to look for Chang’e data of the Moon 
and some selected examples could be rapidly visualized in order to demonstrate the advances allowed 
by the Chinese-Italian collaboration during the Moon Mapping project. 
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Analysis of Solar Wind Ion detectors.
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Abstract

Solar Wind Ion flux measured by Chang’E-1 Moon-orbiting spacecraft has been

analyzed for the Moon Mapping Sino-Italian project. The electrostatic spec-

trometer alignment and the data quality selections are described. As a result,

the first image of the Sun using charged particles is shown. The Chang’E-1

ion flux collected in the periods December/2007-February/2008 and May/2008-

July/2008 showed large variations that seem to be in correlation with the solar

activity.

Keywords: Solar Wind; Solar Flares; multi-messenger astronomy.

1. Introduction

The nature of solar wind has always been an important object of study

throughout the history of outer space exploration and in recent decades there

have been a lot of space projects which probed it, e.g., SOHO [1] and WIND

[2] which are near the SunEarth L1 Lagrange point, STEREO [3] and Ulysses

[4] which are in heliocentric orbits, and FAST [5] and CHAMP [6] which or-

bit about the Earth. In recent years, the exploration and investigation of the

Moon and cislunar space have once again become a hot topic. Japan launched

her second lunar orbiter spacecraft, SELENE (SELenological and ENgineering

Explorer), better known in Japan by its nickname Kaguya [7] on September

14, 2007. India launched Chandrayaan-1 [8], her first unmanned lunar probe

in October 2008. During this period, China also constructed and launched her

Email address: francesco.nozzoli@unitn.it (F. Nozzoli)
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first unmanned lunar-orbiting spacecraft ChangE-1 (abbreviation CE-1) in Oc-

tober 2007, which carried several kinds of scientific instruments, among which

was Solar Wind Ion Detector (SWID). As its name implies, it was designed

to detect the solar wind ion differential number flux. These lunar exploration

programs together with others sent back to Earth a large and varied volume of

data which are essential for furthering our understanding of the Moon and cis-

lunar space environment. Much research has been carried out to investigate the

nature of the solar wind, based on the data collected by numerous spacecrafts

launched in many decades, analyzing the composition of the solar wind, or to

improve our understanding of the Sun. This allows to probe the structure of

solar wind and to construct a model of the cislunar space environment in which

solar wind plays an important role. The solar wind is composed of ions, chiefly

consisting of electrons and protons together with smaller numbers of nuclei of

heavier elements such as He++ and C6+ , N7+, and O6+. These particles are

accelerated by the difference in pressure between the corona and the interplan-

etary space, to velocities large enough to allow them to escape from the Suns

gravitational field. The solar wind is a key factor in the formation of the Earths

magnetosphere, due to its interaction with the Earths magnetic field.

2. The SWID detectors

The equipment carried by CE-1 is called the Solar Wind Ion Detector (SWID),

described by [9]. The SWID has a field of view (FOV) of approximately 6.70×

180o, and can therefore be considered to lie in a plane. The instrument detects

ion differential number flux arriving from half (180o) of that plane, with a Micro

channel plate detector anode divided into 12 equal readouts, each with an angu-

lar view of 15o (see Fig. 1.Left). The instrument is able to detect ion differential

number flux distributed in 48 energy levels on a logarithmic scale ranging from

0.05 to 20 keV. Finally, two identical SWIDs were installed on CE-1, namely

SWIDA and SWIDB, fixed such that they were mutually perpendicular in order

to supplement each others limited FOV, as illustrated in Fig. 1.Right [10].
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Figure 1: Left: Basic principle diagram of SWID. Right: Installation geometry of two SWIDs

instruments in the selenocentric solar ecliptic (SSE) coordinate system. Two vertical fans

show the field-of-views of SWIDs. The dashed line indicates the footprint of the spacecraft.

3. Data sample

SWID data are stored in the standard Planetary Data System (PDS) format,

where each record consists of a time, a 48-by-12 matrix storing ion differential

number flux data across the 48 energy levels and 12 directions as described

above, along with GSE coordinates and MCC coordinates of CE-1 (the defi-

nitions of both coordinate systems are given in Section 3), Quality state, and

Instrument Sun Incidence Angle. A sample record of a data file from SWIDA is

provided in Table 1. For more information on the data of SWID, please refer to

[11] and references therein. Interpreting the SWID data files is not immediately

intuitive; extracting the directional data (i.e., the direction a particular differ-

ential number flux is coming from) is particularly difficult, because the direction

is a function of the relative positions of the Sun, Earth, and Moon, in addition

to the position of the spacecraft and orientation of the SWID. There is also a

large volume of data to handle: the measurement intervals of both SWIDA and

SWIDB were around 3s, stored as separate files for each 2-h orbit around the

Moon, with each file therefore typically holding over 2000 records. SWIDA and

SWIDB amassed about 5000 files during their lifetimes, amounting to over 57

GB of data.
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Data item Unit Sample

Time Timestamp 2007-11-26T21:10:40.893Z

Flux [keV cm2 s sr]−1 a [48x12] matrix

GSE coo Earth radii -48.5635,-30.1448,4.4484

MCC coo km -172.1049,-21.0871,1945.3538

Sun angle Deg. 84.2097, 158.3941, 110.7401

Quality stat. Bit-coded 0 x 0000FF

Table 1: A sample record of a SWIDA data file.

A specially developed 3D visualization method to handle a single CE-1

SWIDs data record is described in [11].

In the following a global analysis of CE-1 SWIDs data is considered.

3.1. Channels alignment validation

The nominal alignment of Solar Wind Ion detector Channels with respect

to Chang’E-1 attitude are described in ref. [10]. Here a data driven validation

procedure, is briefly addressed.

As shown in fig. 2, when the Sun is passing in the Field of View (FoV) of

each channel there is a large enhancement of flux measurement due to unshielded

direct measurement of the Solar Wind; this allows to extract the alignment of

each channel by fit procedure (continuous line) that can be compared with

nominal alignment (dashed line).

Due to the alignment of the Chang’E-1 orbital plane with SWIDB plane (Fig.

1.Right ) when the Sun lies in the FoV of one of the SWIDB channel it will be

in the acceptance of all the other SWIDB channels within the same orbit (i.e. in

the same Sun activity level). This allow the validation the nominal alignment of

SWIDB channels within 7.5o (half channel) of global angular rotation in SWIDB

plane. On the other hand, due to perpendicularity SWIDA plane with respect

to SWIDB plane and due to the limited period of data taking (December/2007-

February/2008 and May/2008-July/2008) the Sun was passing in the FoV only
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Figure 2: Solar wind ion flux distribution normalized for each SWID channel. Vertical axis

is the component of the Sun angle as stored in the data files. Continuous lines are the

channel alignment direction obtained by fit, dashed lines are the nominal channel alignment

as described in ref. [10]. For the period of the data sample, the Sun was passing in the FoV

acceptance for all SWIDB channels and only for the SWIDA channels #6 to #9.

for the SWIDA channels #6 to #9. Moreover the very different Sun activity level

in different data taking periods poses additional difficulties with the comparison

of the flux measured with different Sun angles with respect to SWIDA channels.

This allow the validation the nominal alignment of SWIDA channels within

∼ 15o (one channel) of global angular rotation in SWIDA plane. As a result of

the channel alignment validation, the director cosines for each SWID channel

can be described as (k=[1,12]):

SWIDA[k]x = 0

SWIDA[k]y = −cos [π(231 − 15k)/180]

SWIDA[k]z = cos [π(39 + 15k)/180]

SWIDB [k]x = cos [π(217.5 − 15k)/180]

SWIDB [k]y = 0

SWIDB [k]z = cos [π(52.5 + 15k)/180] (1)
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Finally from fig. 2 it is also confirmed that SWIDB channel #12 and SWIDA

channel #11 and #12 are blocked by the satellite body and that response of

SWIDB channel #9 is degraded, as stated in ref. [10].

On the other hand in this analysis also SWIDA channel #10 seems to be not

usable, with features similar to channels #11 and #12 of SWIDA. A summary

of SWIDA and SWIDB channel geometrical configurations and blocked/broken

channels is given in fig. 3.

Figure 3: Summary of geometrical positions of SWIDA and SWIDB channels. Markers are

shown on blocked/broken channels.

3.2. Data quality selections

In left plot of figure 4 an example of Solar wind ion flux measured by chan-

nel # 8 of SWID-B detector as a function of the cosine of the Sun angle it is

shown. The vertical axis is the energy bin number. Unfiltered CE-1 SWIDs

data shows specific noisy energy channels (horizontal rows) and noisy periods

(vertical rows). The noisy energy channels are removed requiring these qual-

ity criteria on the spectral shape of SWID measurement, removing un-natural

peaking spectra: i) that more than a single energy channel must be nonzero. ii)

more than two energy channels should contain more than half of the average en-

ergy flux. iii) a shape indicator with number of filled (nonzero) energy channels

is used to remove measurement where most of the energy channels are empty.

On the other hand, to remove the noisy periods the average flux measured by

blocked channels SWIDA #10,#11,#12 and SWIDB #12 was considered as a
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classifier. A cut on this quantity remove a population of noisy periods, due, as

an example, to known solar flares.
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Figure 4: Example of Solar wind ion flux measured by channel # 8 of SWID-B detector as a

function of the cosine of the Sun angle with respect to the channel. Vertical axis is the energy

bin number. Left plot shows the raw flux data, right plot shows the same data sample after

the data quality sections described in the text.

The result of these data quality selections is shown in Fig.4.Right.

4. Solar wind distribution map

As shown also in Fig.4, the solar wind flux measured by a specific SWID

channel is maximum when the Sun lies in the FoV of that channel (cos θsun=1).

Considering the 6.5o×15o FWHM distributions of each channel (Fig. 1) the

angular resolution of SWID channels is expected to be of the order of few degree.

Such a modest resolution is not enough to detect the details of the Sun surface

structure, but, thanks to the absence of a strong lunar magnetosphere, an image

of the Sun in the sky as a source of the solar wind ions can be produced by

stacking all the SWIDA/B measurements.

This is shown in Fig.5 where the charged particle image of our star obtained

by CE-1 is compared with the other existing multimessenger images of the

Sun, namely: gamma rays from Fermi-LAT [12] and neutrinos from Super-

Kamiokande [13].

As described in the following, the effect of the large time variability on the

solar wind flux, due to variation of Sun activity, affects with systematics the
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Figure 5: Top figure: Sun centered solar wind flux map as measured by Chang’E-1. The

apparent angular size of the Sun in this map is compatible with the 15oFWHM angular

aperture of the Chang’E-1 SWID channels. As a comparison, in the bottom figures the Sun

as observed with different particle/messengers: Sun centered flux map for E>100 MeV gamma

rays as measured by Fermi-LAT [12] (bottom left) and for neutrinos as measured in 12 years

by Super-Kamiokande [13] (bottom right).

”pointing” capability of SWIDs channels that cannot span a large fraction of

the sky at the same time.

5. Sun activity

During the Chang’E-1 SWIDs data taking: December/2007-February/2008

and May/2008-July/2008 the Sun was exactly passing the Solar minimum ac-
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tivity, at the end of the cycle 23. Despite the minimum of Solar activity, large

time variations in the sunspots number [14] and in the magnitude of solar flares

[15, 16] has been observed.

Jan Mar May Jul

ar
b.

 u
ni

t

Chang'e-1
Solar Flares
#Sun spots

Figure 6: Sun activity as measured by Chang’E-1 in the periods December/2007-

February/2008 and May/2008-July/2008 (blue) as compared with number of sunspots [14]

(black/hatched) and with the magnitude of solar flares as measured by Hinode [15] and

RHESSI [16] satellites (yellow).

In Fig.6 these known observables related to solar activity are compared with

the variations of Solar wind flux as measured by Chang’E-1 SWID detectors.

The existence of some correlations is very interesting, considering that the three

quantities are based on very different effects related to the same variability

source. In particular the solar wind measured by CE-1 needs approximately a

couple of day to cover the 1AU of distance of the Moon from the Sun, on the

contrary of the fast photon signal measured by the other observables.
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6. Conclusions

SWIDs, as two scientific instruments of ChangE-1, were able to measure the

solar wind and the plasma environment near the Moon. Besides the normal in-

flight observations, SWIDs was able to provide an interesting image of the Sun

based on charged particles, enriching the collection of multimessenger pictures

of our star. The correlation of the flux variability as measured by CE-1 with

respect to the other existing flare indicators can be of large interest from the

point of view of space weather studies and applications.
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ABSTRACT
Landslides have been observed on several planets and minor bodies of the solar System,
including the Moon. Notwithstanding different types of slope failures have been studied on
the Moon, a detailed lunar landslide inventory is still pending. Undoubtedly, such will be in a
benefit for future geological and morphological studies, as well in hazard, risk and suscept-
ibility assessments. A preliminary survey of lunar landslides in impact craters has been done
using visual inspection on images and digital elevation model (DEM) (Brunetti et al. 2015) but
this method suffers from subjective interpretation. A new methodology based on polynomial
interpolation of crater cross-sections extracted from global lunar DEMs is presented in this
paper. Because of their properties, Chebyshev polynomials were already exploited for para-
metric classification of different crater morphologies (Mahanti et al., 2014). Here, their use has
been extended to the discrimination of slumps in simple impact craters. Two criteria for
recognition have provided the best results: one based on fixing an empirical absolute
thresholding and a second based on statistical adaptive thresholding. The application of
both criteria to a data set made up of 204 lunar craters’ cross-sections has demonstrated that
the former criterion provides the best recognition.
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Introduction

Different types of mass wasting processes have been
observed on several planetary and minor bodies of
the solar System, as reported in the abundant litera-
ture on this topic (Bart, 2007; Brunetti, Xiao,
Komatsu, Peruccacci, & Guzzetti, 2015; Buczkowski
et al., 2016; De Blasio et al. 2011; Krohn et al., 2014;
Massironi et al., 2012; Mazzanti, De Blasio, Di
Bastiano, & Bozzano, 2016; Quantin, Allemand, &
Delacourt, 2004; Waltham, Pickering, & Bray, 2008;
Williams et al., 2013; Xiao & Komatsu, 2013)). On
the Moon, first studies about mass movements were
published by Pike (1971) using images from the
Apollo 10 Mission. He managed to recognize and
classify landslides as creeps, crater wall slumps, deb-
ris flow and rock falls. However, before 2009 only
few studies have been concentrated on landslides on
the Moon. Recently, Xiao, Zeng, Ding, and Molaro
(2013) studied lunar landslides and classified them
into different morphologic groups on the basis of
criteria similar to those applied by Cruden and
Varnes (1996), which is usually assumed as consoli-
dated international reference for classifying crater
inner wall landslides on the Earth. Xiao et al.
(2013) selected more than 300 examples of slope

failures on the Moon that were identified as falls,
flows, slides, slumps and creeps. In the large major-
ity of cases, lunar slope failures are found in craters
sizing up to a few tens of kilometres. The high
energy released during the impact may have left
some unstable areas inside the crater, which came
to collapse afterwards. Sentil Kumar, Keerthi, Sentil
Kumar, and Mustard (2013) investigated debris
flow-type mass movements and suggested that
these features were originated by a more recent
activity than the impact cratering itself, probably
due to moonquakes produced by other meteorite
impacts in the nearby. Recently, Brunetti et al.
(2014, 2015) used a visual analysis for detecting
and classifying landslides on Mars, the Moon and
Mercury.

In this research, the recognition process of lunar
landslides has been applied to detect slumps in simple
impact craters, i.e. those cavities typically bowl-shaped
and not affected by terraced rims (Melosh, 1989),
secondary impacts or heavily degraded. Figure 1
shows some examples of slumps in lunar impact
craters.

Geological, morphological, physical factors and
even human activity on the Earth (e.g. road cuts)
may lead to the instability of the surface features,
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and may be considered as predisposing factors for
landslides. While multiple combined factors may
concur to the instability of a slope, usually only a
single triggering factor is responsible for the landslide
occurrence. The triggering factors for lunar landslides
are distinctively different from the ones on the Earth.
The large number of various size meteorite impacts
are considered as the main direct triggering factor for
mass movements on the Moon. These may also act as
predisposing factors. Indeed, impacts may induce
shock waves that directly disturb materials on slopes
forming mass wasting landforms (Lindsay, 1976).
This process may result in crushed subsurface bed-
rock and formation of fractured zones that sometimes
extend for several times the crater radius beneath the
crater floor (Melosh, 1989). In such a weakened
region, a landslide may be triggered in a second
stage by another impact in the nearby or by a
moonquake.

After reviewing of recent missions to the Moon
and the available data sets in Section “Recent mis-
sions to the moon and data applied in the work,”, it
turns out that a consolidated methodology for the
automatic or semi-automatic recognition of land-
slides in lunar impact craters has not been defined
yet (see Section “Visual detection of landslides within
simple impact craters”). Consequently, a new method
based on the approximation of crater cross-sectional

profiles with Chebyshev polynomials is described in
Section “Landslide recognition based on the
Chebyshev polynomials .” Thanks to the analysis of
the asymmetry of such profiles, the presence of land-
slide features in lunar impact craters is recognized.
Experimental results are reported in Section
“Application 1 along with GLD100,” while Section
“Conclusions and future developments” hosts discus-
sions and some final considerations.

Recent missions to the moon and data applied
in the work

For centuries, mankind has been interested in study-
ing the Moon, but it was only in the middle of the
20th century that the first space missions and probes
started approaching the Earth’s satellite. In the last
decade, with the help of the major space agencies and
their exploration missions, scientists started to have
access to huge data sets holding the potential for
unprecedented scientific discoveries (Zinzi et al.,
2016) . At present, three ongoing lunar missions
must be mentioned: the Lunar Reconnaissance
Orbiter (LRO) by National Aeronautics and Space
Administrations (NASA, United States), the
SELenological and ENgineering Explorer (SELENE-
KAGUYA) by the Japan Aerospace Exploration

Figure 1. Some examples of lunar slumps: (a) a slump along the promontorium Laplace where the deposit has buried a small
crater and part of graben (white arrows); the traces of a few fallen boulders due to a subsequent rock fall can be noted as well
(yellow arrows); (b) a slumped wall on the Crater Tharp; (c) a close up of the slump of Crater Tharp, in yellow is highlighted the
crown and in white the deposit. Images obtained via QuickMap™ tool.
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Agency (JAXA, Japan), and Chang’E missions by the
Chinese Nationals Space Administration (CNSA, P.R.
China). LRO (Chin et al., 2007; Robinson et al., 2010)
and SELENE-KAGUYA (Araki et al., 2007) are orbi-
ters with on-board measuring instruments. Chang’E
is an ambitious program composed of several mis-
sions dedicated to the exploration of the Moon. The
first missions in the series (Chang’E-1 and Chang’E-
2) had the main aims of providing a digital elevation
model (DEM) of the lunar surface and mapping the
abundance and distribution of various chemical ele-
ments [Sun et al., 2005]. Chang’E-3 (Li, Liu, et al.,
2015) is an unmanned exploration mission incorpor-
ating a robotic lander and a rover (Yutu), that has
already travelled 114 m on the lunar surface.

LRO has six individual instruments on-board, with
the purpose of producing accurate maps and obtain
high-resolution images, to assess potential future
landing sites and lunar resources, and to characterize
the radiation environment (Chin et al., 2007). The
instrumental payload on-board LRO also includes the
Lunar Reconnaissance Orbiter Camera (LROC), con-
sisting of two Narrow-Angle Cameras (NAC’s) and a
Wide-Angle Camera (WAC). NAC’s ground sam-
pling distance (GSD) may reach 0.5 m pixel size
over a 5 km swath, while WAC provides images at
average GSD of 100 m over a 60 km swath in seven
spectral bands. As a result from the WAC stereo
images a nearly global DEM with a resolution
100 m x 100 m was produced using photogrammetric
image matching (GLD100), see (Scholten et al., 2012).
This DEM covers 98.2% of the entire lunar surface,
with an average elevation accuracy in the order of
±20 m, which may be even better than ±10 m in the
maria. The GLD100 as well as WAC and NAC images
were used for the study of landslide features on the
lunar surface. Such data sets could be accessed
through the QuickMap™ web interface (http://target.
lroc.asu.edu/q3/) and the open source Java Mission-
planning and Analysis for Remote Sensing (JMARS)
software. This is a WEB-GIS platform developed by
the Arizona State University (http://jmars.asu.edu/)
that allows handling planetary remote-sensing data
sets.

Visual detection of landslides within simple
impact craters

While the automatic identification of lunar impact
craters has been successfully achieved (Kang, Luo,
Hu, & Gamba, 2015; Vijayan, Vani, & Sanjeevi,
2013; Li, Ling, et al., 2015), to date the detection
and mapping of lunar landslides has been obtained
only through visual inspection of images (e.g.
Brunetti et al., 2015; Xiao et al., 2013). The recogni-
tion and mapping of landslides on the Moon surface
adopted the same visual interpretation criteria used

by geomorphologists to detect and map terrestrial
landslides (Antonini et al., 2002; Rib & Liang, 1978;
Speight, 1977; Van Zuidam, 1985). For the visual
detection and mapping of landslides in impact cra-
ters, Brunetti et al. (2015) started with a recognition
of the general landscape (e.g. local slopes, terrain
steepness) in the areas of the selected crater using
available images and DEM’s. Then, they extracted
several topographic profiles from the DEM, thus
allowing the morphology analysis of the crater and
of the landslide, and more specifically, the detection
of the landslide boundaries. Thereafter, they drew a
circle that approximated the crater circumference, to
detect the deformation of the crater rim induced by
the landslide. The size of the circle was set according
to the curvature of the non-collapsed crater rim.
Finally, the landslide scarp and deposit were mapped
(see examples from Brunetti et al. (2015) in
Figure 2).

Brunetti et al. (2015) estimated a 20% uncertainty
in the geometric measurement of the landslide area.
This uncertainty is ascribed to the complex morphol-
ogy of the lunar terrain, and to the resolution of
images used to detect and map slope failures. In
addition, the frequent presence of elongated shadows
or overexposed areas prevents the correct identifica-
tion of landslide boundaries.

Landslide recognition based on the Chebyshev
polynomials

Since the presence of an enormous amount of impact
craters on the Moon where slumps might have
occurred, the definition of a methodology that auto-
matically provides at least a preliminary recognition
of such mass wasting processes is still called for. In
the previous section, the visual analysis of optical
images has proven to be efficient for slump recogni-
tion. In the experience of the authors, the visual
analysis of optical images works well in the case of
interpretation by an expert geologist, but it is highly
error prone when some pattern recognition algo-
rithms are applied. Crater geometry could potentially
provide more robust information when implemented
in an automatic recognition process rather than using
images. Any significant deviation of the crater geo-
metry from the original shape of the simple bowl-
shaped crater may be interpreted as the presence of a
landslide. As it can be seen in Figure 3, the morphol-
ogy of impact craters might also be quite complex
with terraced margins and central peaks (Melosh H.J.,
1989) and in such a case the recognition of slumps is
more difficult. Also, the impact angle of the meteor-
ite, the sloped terrain, and the degradation processes
in the crater may have led to situations where the
presence of a slump may be masked, or where
morphologies similar to the ones due to slumps
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may be found. Such cases would easily result in
omission and errors during classification. For this
reason, the algorithm presented in the following is
supposed to work for simple craters having approxi-
mately circular shape. These might have resulted
from the impact of meteorites whose trajectory is
not lower than 10° with respect to the horizontal
plane, as stated in Melosh (2011).

Polynomial approximation has been used in
Mahanti, Robinson, Humm, and Stopar (2014) to
find a characterization of crater cross-sectional

profiles. This method can be classified as data-dri-
ven, since it does not need any a priori model to be
assumed. Since the approximation of more complex
shapes of the profiles can be done by simply
increasing the order of the approximating polyno-
mial, this solution is potentially efficient also in the
case of craters affected by soil degradation pro-
cesses. The approximation level depends on the
degree of the adopted polynomials: the terms that
are omitted give rise to the so called truncation
error, whose magnitude is related to the specific

Figure 2. Examples of landslides mapped in two lunar craters. Figures (a) and (b) portray Gerasimovich D; (c) and (d) Cassini A
craters. The blue circle approximates the crater rim; purple and green shaded areas are the landslide scarp and deposit,
respectively. Credits: (Brunetti et al., 2015) and NASA/Goddard Space Flight Center/ASU.

Figure 3. Example of different types of lunar craters, from the simplest one consisting in a single bowl-shape (at the upper left
side crater Linné) up to complex craters (at the upper right side crater Tycho). General structure of (c) simple crater and (d)
complex crater. Credits: NASA/Goddard/Arizona State University.
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implemented polynomials. In Mahanti et al. (2014)
the Chebyshev polynomials (Mason & Handscomb,
2010) have been used for approximating craters’
cross-sectional profiles. Since the presence of a
slump in a crater may alter the symmetry of the
profiles intersecting the slump’s body, the analysis
of symmetry might be used for recognition, as in
Mahanti, Robinson, and Thompson (2015). The
development of the idea, that was briefly intro-
duced in Mahanti et al. (2015), is presented here,
after providing a short review on Chebyshev poly-
nomials’ mathematical background and their basic
properties.

Background on Chebyshev polynomials

The Chebyshev polynomials are a series of ortho-
gonal polynomials, each of them featuring a
unique and uncorrelated shape with respect to
any other members of the series. Following
(Mahanti et al., 2014), the so called Type I
Chebyshev polynomials have been adopted for
approximating crater cross-sectional profiles. This
is motivated by the great simplicity of the coeffi-
cients related to this representation. The formula-
tion of polynomials’ basis functions is based on a
recursive series defined in the domain between −1
and +1:

Tnþ1 xð Þ ¼ 2xTn xð Þ � Tn�1 xð Þ; xj j � 1; (1)

where Tn(x) is the polynomial basis function of order
n. The basis functions of order n = 0 and n = 1 are T0
(x) = 1 and T1(x) = x, respectively. In Figure 4, the
graphical plot of the six basis functions of Chebyshev
polynomials are shown.

In order to approximate a real function f(x), a
linear combination pM(x) of the first M + 1 basis
functions of Chebyshev polynomials is adopted:

f xð Þ ffi pM xð Þ þ o xMð Þ

¼
XM

n¼0

CnTn xð Þ þ o xMð Þ; (2)

where M is the degree of the Chebyshev polynomial
and Cn are the coefficients that modulate the ampli-
tude of each basis component. Coefficients Cn are
estimated on a least-squares basis to fit with real
profile data, as discussed in subsection ‘Landslide
recognition using Chebyshev polynomials’. The resi-
dual approximation error o(xM) is equal to the sum of
missing terms after degree M that are not considered
in the approximation (i.e. truncation error).

As it results from Equations (1) and (2), in the
Chebyshev polynomial series even (symmetric w.r.t.
vertical axis) and odd (anti-symmetric) basis func-
tions alternatively appear. Consequently, the size of
odd coefficients may express the degree of asymmetry
of the approximated function f(x).

Several properties make the Chebyshev polyno-
mials particularly efficient for approximating crater
cross-sectional profiles. These could be summarized
in five main points:

(i) The basis functions are mutually orthogonal and
the estimated coefficients are uncorrelated. This
property results in the consequence that, even
though the total number of adopted coefficients
may be different, the estimated values of the
lower order coefficients it is always the same.
This property is important because it makes the
estimated coefficients independent from the spe-
cific estimation process, hence they can be com-
pared in a meaningful way among several cross-
sectional profiles. Indeed, lower numbered coef-
ficientsCn have a larger impact in the approxima-
tion of the crater profile geometry.

(ii) Chebyshev polynomials may well fit to the
interpolated function f(x), i.e. the crater

Figure 4. Graphical plots of the first six basis functions of Chebyshev polynomials (in different colours).
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cross-sectional profile (Gautschi, 2004; Mason
& Handscomb, 2010), if a proper number of
basis functions/coefficients is selected; conse-
quently, residuals may also be very small,
depending on the number of adopted coeffi-
cients. Taking advantage of this property,
Mahanti et al. (2014) demonstrated that
lunar crater cross-sectional profiles could be
approximated by using the first 17 coefficients
(M = 16) of Chebyshev polynomials.

(iii) Extreme values of Chebyshev polynomials
always occur at some specific positions on the
reference axis (x = −1, 0, +1). This property
makes easier to link the estimated polynomials’
coefficients with the geometry of the crater.

(iv) Correlation among the lower order coefficients
as well as some combinations of coefficients
with some important morphological properties
of the crater and its surrounding terrain exist
(average crater profile elevation, local topo-
graphic gradient, crater depth, etc.), see
(Mahanti et al., 2014). This does not mean
that morphological features can be directly
obtained from Chebyshev coefficients, but that
a set of numerical shape indicators can be
related to some morphological properties,
through a repeatable almost automatic process.

(v) Detection of asymmetry in the crater cross-
sectional profile is possible on the basis of
the analysis of odd polynomials’ coefficients.

Landslide recognition using Chebyshev polynomials

In this subsection, the description of the algorithm
conceived for slump landslide recognition is pre-
sented, while next section on “Application 1 along
with GLD100” will demonstrate its application. The
general workflow that is followed is shown in
Figure 5, while in Figure 6 different steps of the
analysis of a lunar crater are reported.

The approximation of each profile is accomplished by
considering a cross-section extending outside the crater
rims to include a small portion of outer terrain. The
distance between both extremes of the profile is then
normalized in the interval −1 and +1, being this the
domain of Chebyshev polynomials, see Equation (1). In
the case under consideration, the function to approxi-
mate is the discrete crater profile f(xi), being x the sample
direction. Points along the cross-sectional profilemust be
regularly spaced at the same sampling resolution. Each
profile can be extracted from a DEM, in this case the
GLD100.

The input is given by the central geographic coor-
dinates (latitude φcc, longitude λcc) of the crater with
respect to the lunar ellipsoid (Edwards et al., 1996)
and the crater cross-sectional profile. Both can be
obtained from existing databases (e.g. Losiak et al.,

2009), from previous studies (e.g. Brunetti et al.,
2015), or simply by manual selection on a digital
georeferenced map.

Using this input information, the digital surface
model of the whole crater is extracted from a lunar
DEM, including an outer region since the profile to
extract may comprehend also a portion of external
terrain. A window equal to approximately 50% of the
profile outside both rims has been adopted here to
extract the crater DEM from the global DEM
(GLD100). This intermediate step is motivated by
the fact the global DEM may also be online, thus
first a portion of DEM comprehending the crater is
downloaded, then four cross-sectional profiles are
manually extracted at 45° relative orientation steps
starting from North–South direction, see Figure 7. It
has been proven that four profiles are enough for
detecting a large mass wasting feature, i. e. slump,
while for the purpose of more detailed analyses (e.g.
determining the landslide boundaries or the volume
of the deposit) higher number of cross-sectional pro-
files could be considered as useful. Since the slope of
lunar DEM is in general quite smooth and flat, a
bilinear interpolation of the four closest points is
used to derive the elevation hi of point ith in each
cross-sectional profile. Along each profile, points are
interpolated at regular spacing δ. The total length of
the profile depends on the rim-to-rim distance and
maybe uneven for different cross-sections related to
the same crater. Indeed, the shape of a crater may be
elongated along one direction because of the presence
of a slumped wall. An extension of the profile length
approximately equal to 30% of the rim-to-rim dis-
tance is adopted here. In order to tailor the extraction
of cross-sectional profiles, a precise model for the
crater rim shape should be applied at this stage. As
an alternative, the position of the crater’s rims on
each profile may be manually picked up.

The Chebyshev polynomial coefficients are esti-
mated here using a standard Least-squares approach.
Following the results discussed in Mahanti et al.
(2014), coefficients up to order M = 16 are enough
for the characterization of the crater morphology.
Details about this stage can be found in Yordanov
et al. (2016), as well as reports about statistical testing
to assess the quality of the interpolation.

Since the coefficient with M = 0 gives the average
normalized elevation of the cross-sectional profile and
the coefficient with M = 1 gives the general slope, both
can be used to shift the elevation around zero mean
and to flatten the profile shape. This task helps the
application of the criteria for the analysis of the asym-
metric component that will be introduced in the fol-
lowing. Indeed, the sum of polynomial members
corresponding to odd coefficients represents the asym-
metric component of the profile, which is supposed to
be due to the presence of a slump. Indeed, in the case
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no slump has developed inside the crater, the
Chebyshev approximation should mainly consist of
non-zero even coefficients, while the odd coefficients
should be close to zero. On the contrary, in the case a
slump is present, the odd coefficients should be signif-
icantly different from zero. Testing the size or the
statistical significance of the odd coefficients should
theoretically be a direct way to detect symmetry. After
a few experiments already reported in Yordanov et al.
(2016), the analysis of odd coefficients did not provide
satisfying results. This was due to the presence of noise
and other local effects in the inner crater topography,
which may have caused the odd coefficients to be
significantly different from zero even in the case a
slump was not present. As an alternative, the analysis
of the odd Chebyshev coefficients’ absolute size
demonstrated to be a more effective way to detect the
presence of a significant asymmetric component, then

the possible existence of a slump. To carry out such an
analysis for a given cross-sectional profile, the contri-
bution of the odd coefficients to the interpolated eleva-
tion is computed for any points at position xi located
inside the crater (xmin < xi < xmax, being xmin and xmax

the positions of the rim edges in the profile):

hi
0 ¼

Xn¼3

M

CnTn xð Þ n ¼ 3; 5; 7; . . . ;Mf g: (3)

Here the basis function corresponding to M = 1 is
omitted since this describes the general slope to be
flattened. On the other hand, successive basis func-
tions may describe asymmetries inside the crater and
thus are considered in the analysis.

Secondly, the Root Mean Square Error (RMSE) of all
elevations hi is computed for the cross-sectional pro-
file sec:

Figure 5. Workflow of the algorithm adopted to detect the presence of a slump in a cross-sectional profile of a lunar crater.
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RMSEsec ¼
Pninn

i¼1 h0i � hið Þ2
ninn

; (4)

where ninn is the number of points located inside the
rim-to-rim sector.

Since the RMSEsec should be small in the case of
the absence of a slump (see Figure 8) and large in

the presence of a slump (see the last subfigure in
Figure 6), the RMSEsec is tested against a threshold
established to operate the landslide recognition.
Thresholds can be defined on a statistical basis or
on an empirical basis, coming from the observation
of cross-sectional profiles that are really affected by
slumps. The selection of the threshold type is
directly connected to the adopted data set. For
this reason, this discussion is done in the experi-
mental Section ‘Application 1 along with GLD100’.

Since the bottom of a crater may contain a low-
frequency component due to the accumulation of
sediment rather than to large sudden slope failures,
the presence of a regular linear trend may be detected
and removed before the analysis of odd elevation hi.

Application along with GLD100

During this study a total amount of 51 lunar impact
craters (Figure 9) have been analysed to detect the
presence of slumps. Among these, 31 had been
already classified as affected by landslides (Brunetti

Figure 7. Example of extraction of four cross-sectional
profiles to be analysed in the case of Moseley C crater
(background image mosaicked from NAC LROC images).

Figure 6. Application of the algorithm described in the workflow in Figure 5 to analyse a cross-sectional profile of crater
Moseley C, West–East direction.
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et al., 2015), while 20 additional craters without
slumps have been investigated for the purpose of
having a more consistent data set including either
profiles “with landslides” and “without landslides.”
These last craters have been chosen on a visual-
interpretation basis, and with diameter in the
range between 7 and 16 km. The diameters of the
51 craters have the following dimensions: 10 craters
have diameter between 7 and 10 km, 11 between 10
and 15 km, 12 between 15 and 20 km, 10 between
20 and 25 km, 5 between 25–30 km and 3 craters
between 30 and 37 km. Even though, in the litera-
ture (Melosh 2011) a simple crater on the Moon is
in the range up to 20 km of diameter, in this work
larger craters were considered as well due to the
fact they did not show those features typical of a
complex crater such as central peaks or terraced
walls. Nevertheless, we acknowledge that landslides
mapped in larger craters could be incomplete terra-
cing due to complex crater formation during the
modification stage (Brunetti et al., 2015). The total

number of extracted cross-sectional profiles includ-
ing all four directions has been 204. Each cross-
section has been made up of points at linear sam-
pling distance of 200 m, given an original spatial
resolution of the adopted DEM 100 m × 100 m.
The reduction of resolution was decided to
smoothen each section in order to mitigate local
noise, and to consider that a cross-section direction
may also be non-parallel with respect to the DEM
grid axes.

The selection of the impact craters to analyse has
been done to have a data set sharing common fea-
tures:

● Simple bowl-shape crater type;
● Size of the maximum crater diameter ranging

from 7 km up to 20 km, with some exception up
to a diameter of 37 km but with simple bowled
shape;

● Maximum slope inside the crater below 35°; and
● Almost circular shape of the crater.

Figure 8. Residuals of the cross-sectional profile estimated on the basis of odd Chebyshev polynomials coefficients with respect
to the original profile in the case of crater Moseley C, North–South direction, which does not include a slump.

Figure 9. Location of the lunar impact craters selected to be part of the analysis for detecting inner slumps.
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Through visual recognition each cross-sectional
profile has been classified as “with landslide” or
“without landslide.” In total, 65 cross-sections have
been classified as “with landslide” and 139 “without,”
respectively. Using such a data set made up of both
types of cross-sectional profiles, the efficiency of the
algorithm to detect slumps against omission and
commission errors can be evaluated.

As previously mentioned, two threshold criteria
have been proposed to scrutinize the presence of
slumps. Indeed, one of the aims of the test within
the case study presented above has been to find which
threshold would perform better. Both thresholds are
designed to analyse the obtained residuals after inter-
polation and filtering process. In particular, the
RMSEsec of residuals, which is expected to be close
to zero in the case there is not a landslide in the
crater, is analysed. The problem is to decide which
is the threshold on the RMSEsec in each individual
cross-section. A desired result was to define on one
side an unique threshold value, whether adaptive or
fixed, in order to be able to analyse different craters
under the same conditions. On the other, to establish
a numerical procedure for detecting slumps, omitting
the human factor throughout the process of analysis.
Of course, the presence of noise and the local topo-
graphic anomalies make this analysis more complex.

Statistical adaptive thresholding method

The statistical adaptive thresholding (SAT) criterion
defines an adaptive threshold depending on each
separate impact crater. Thresholding is based on the
statistical analysis of all four cross-sectional profiles
extracted from the same crater. The basic hypothesis
is that the presence of a slump should not affect all
cross-sections. Consequently, by comparing the
RMSEall computed on all profiles with the ones com-
puted on a single profiles (RMSEsec), it should be
possible to point out the presence of a slump. A

scaling factor k has been introduced, where k ranges
from 0.8 and 1.35. The condition for recognizing a
landslide in an individual cross-sectional profile is
that:

RMSEsec > k � RMSEall: (5)

Empirical absolute thresholding method

The empirical absolute thresholding (EAT) criterion
defines a fix threshold disregarding, which is the
impact crater under analysis. In addition, all four
cross-sectional profiles are checked against the same
threshold. The adopted values applied to the case
study range from 100 to 170 m at 10 m steps. The
proposed values range was obtained after testing a
much wider spectrum (from 50 to 300 m) and due to
not satisfactory results was narrowed down to one
described previously.

While in the future development of this research a
way to link the empirical threshold to some observa-
ble physical properties should be investigated, so far
these thresholds have been simply guessed by looking
at the size of residuals in the odd coefficient profiles.

Results and discussion

The process for interpolation of crater cross-sectional
profiles based on Chebyshev polynomials and the suc-
cessive computation of RMSE of residuals has been
applied to all 51 craters belonging to the case study.
The analysis of RMSE has been repeated with both types
of thresholding methods and different threshold values.
In this manner, all possible combinations were obtained
and the achieved results were not influenced by any
outer factors. Results are summarized in Table 1.

Disregarding the type of criterion applied, the
selection of a higher threshold value has two opposite
effects on the true detection of cross-sectional profiles
“with landslide” and “without landslide”. These

Table 1. Overview of the results obtained in the classification of cross-sectional profiles as “with landslide” and “without
landslide,” according to diverse thresholding methods and values.

Landslides No landslides

True False True False

Threshold method Num (%) Num (%) Num (%) Num (%)

SAT-adaptive 0.8 RMS 54 83.1 11 16.9 67 48.2 72 51.8
1 RMS 52 80.0 13 20.0 83 59.7 56 40.3
1.1 RMS 50 76.9 15 23.1 90 64.8 49 35.3
1.15 RMS 47 72.3 18 27.7 97 69.8 42 30.2
1.2 RMS 46 70.8 19 29.2 105 75.5 34 24.5
1.25 RMS 43 66.2 22 33.9 106 76.3 33 23.7
1.3 RMS 40 61.5 25 38.5 111 79.9 28 20.1
1.35 RMS 38 58.5 27 41.5 116 83.5 23 16.6

EAT-absolute value 100 57 87.7 8 12.3 110 79.1 29 20.9
110 55 84.6 10 15.4 116 83.5 23 16.6
120 54 83.1 11 16.9 120 86.3 19 13.7
130 52 80.0 13 20.0 122 87.8 17 12.2
140 48 73.9 17 26.2 122 87.8 17 12.2
150 46 70.8 19 29.2 127 91.4 12 8.6
170 41 63.1 24 36.9 129 92.8 10 7.2
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effects can be clearly seen in Figures 10 and 11. In the
former case, the higher the threshold value, the lower
the fraction of true classifications. In the latter case,
the higher the threshold value, the higher the number
of correct classifications. This result is quite logical,
since the rising up of the threshold may lead to
exclude from the classification as “with landslide”
those cross-sectional profiles affected by smaller size
slumps. The opposite effect is obtained when consid-
ering the classification of cross-sectional profiles
“without landslide.” As this is what has happened
about the omission errors according to the threshold
values, complementary results can be observed in
Figures 10 and 11 about commission errors. For
instance, as far as the threshold value grows, the
fraction of cross-sectional profiles “with landslide”
that are not correctly classified increases. This finding
means that appropriate thresholds should be applied
when the objective is to seek for cross-sections
affected by landslides or for profiles which are not
affected.

The empirical absolute threshold criterion has
offered the best performance in the classification of
cross-sectional profiles “without landslide.” Here a
result of 92.8% (129 over 139 profiles) has been
reached when using an EAT of 170 m, while SAT
has provided the best result of 83.5% (116 over 139
profiles) when using a threshold value of
k = 1.35·RMSEall. When seeking for cross-sections
“with landslide”, the EAT has rated 87.7% (57 over
65 profiles) of true classifications when using a
threshold equal to 100 m, while SAT has provided
83.1% (54 over 65 profiles) of correct classifications
in correspondence of a threshold k = 0.8. Omission
errors are of course complementary to 100% of cor-
rect classifications. In addition, by looking at plots in
Figures 10 and 11, a trade-off threshold value opti-
mizing the number of correct classifications in the
case of cross-sections “with” and “without landslide”
may be set up at the intersection of lines describing
the behavior of true classifications (i.e., red and yel-
low lines, respectively). For EAT, a threshold value of

Figure 10. Plots of results in terms of true/false successful classification (%) for both cases “with landslide” and “without
landslide” when the empirical absolute thresholding (EAT) is used.

Figure 11. Plots of results in terms of true/false successful classification (%) for both cases “with landslide” and “without
landslide” when the statistical adaptive thresholding (SAT) is used.
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113 m would give approximately 84% of correct clas-
sifications for both cases. For SAT, a threshold value
k = 1.16 would give approximately 72% of correct
classifications.

It should be noted that these results are prelimin-
ary and further analyses and expansion of the pro-
posed method are necessary, in order to improve
them. This is also to the fact that the variety of
cases is huge and some features are wrongly detected,
i.e. profiles “with” landslides are recognized as ones
“without” and the opposite. But investigating these
cases could improve future algorithms. In Figure 12 is
represented the W-E profile of the crater Drebbel,
with its RMSEsec = 79.07 m, it was recognized as a
profile “without” landslides (applied threshold
EAT = 100 m). But one can clearly notice the fact
that the profile is not clearly symmetric and a feature

is interfering the expected bowl-shape. Addition
visual analysis at the GLD100 confirmed the feature
is a deposit of a collapsed western wall. But the
deposit itself was not big enough to be detected by
the method. On the other hand, Figure 13 represents
the NW-SE profile of crater Schrodinger B, where the
RMSEsec = 133.08 m with again EAT = 100 m is
recognized as profile “with” landslide. The feature
appearing at the bottom of the crater could not be
related to a landslide deposit. The high RMSE value
could be related to the short-length dunes (red cir-
cles) previously detected as well in other craters (e.g.
Yordanov et al. (2016)). An increasing of the number
of craters’ profiles extracted from the DEM could
improve the results and eliminate errors similar to
the above discussed. As well, it can contribute for
more precise determination whether the deposit is

Figure 12. W-E profile of the crater Drebbel, with RMSEsec = 79.07 m and recognized by EAT = 100 m as profile “without”
landslides.

Figure 13. NW-SE profile of the crater Campanus A, with RMSEsec = 103.06m and recognized by EAT = 100 m as profile “with”
landslides. The red circles are highlighting the short-length dunes.
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from one or more events, to delineate the boundaries
of it and even to compute the displaced mass.

Although both criteria have not output largely dif-
ferent results, in general the use of fixed thresholding
(EAT) has demonstrated a slightly better performance.
It should be also noticed that the selected impact craters
share some homogenous properties (as described at the
beginning of this section) and are evenly widespread on
the entire surface of the Moon (see Figure 9). This leads
to the conclusion that the choice of an EAT having a
general validity among groups of similar craters is not a
difficult task. On the other hand, the selection of a
threshold value has been confirmed by using a set of
pre-classified cross-sectional profiles for validation. In
the development of this research it would be relevant,
on one side to link the threshold values to some physical
properties of cross-sectional profiles. On the other side,
it would be important to extend the analysis to a wider
sample of craters, in order to use a subset of pre-classi-
fied profiles to define proper thresholds to be exten-
sively applied to non-pre-classified profiles as well.
Anyway, the thresholds obtained from this study have
been sufficiently proved to have a general validity, so
that they will be suitable to be used in future research
applications.

Conclusions and future developments

A methodology for the automatic recognition of
landslides inside the impact craters on the Moon
has been presented and discussed. In particular, the
proposed technique works on the basis of Chebyshev
polynomial approximations and it is designed for
detection of slumps occurred after the meteorite
impact that originated the crater. Such phenomenon
generally leaves a significant modification of the cra-
ter topography, which in the most cases gives an
asymmetric shape to the crater itself. The analysis of
the odd components of the Chebyshev polynomials is
exploited to detect the possible presence of a slump.
This procedure is applied to approximate topographic
cross sections extracted from four cross-sectional
profiles from a global lunar DEM (GLD100).

The best performance in term of successful slump
recognition has been obtained when using an empirical
absolute threshold (EAT) for discriminating those
cross-sectional profiles affected by landslides from
others. During the analysis of a case study, 92.8% of
cross-sections containing a slump have been correctly
classified in almost automatic way, barring the prepara-
tion of input data and the definition of crater rims,
which is still currently a manual task. Even though
non-exhaustive results have been obtained, the analysis
could be used as preliminary processing step to be
refined afterwards. This option may be relevant to the
production of a complete map of slumps in impact
craters on the entire Moon or other planetary bodies.

On the other hand, in order to mitigate the number
of wrong classification errors, two different actions
should be undertaken. On one side, a better definition
of the threshold for discriminating those cross-sectional
profiles comprehending a slump should be operated. In
particular, linking the EAT to some physical properties
of the crater morphology and to data quality is expected
to give a positive contribution. On the other side, other
analyses based on complementary data sources would
help make the recognition process more robust. For
instance, the use of multispectral data from Chinese
Chang’E-1 mission has offered some initial interesting
results for the detection of spectral anomalies along the
slopes of craters, which can be linked to lithological and
morphological different features (Scaioni et al., 2016).

Also some improvements to rise up the level of
automation of the whole procedure are needed. One
of them consists in the integration of some techniques
for extracting craters’ rims and other geomorphological
features that help the landslide recognition algorithm.
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Automatic Extraction and Identification of Lunar
Impact Craters Based on Optical Data and DEMs

Acquired by the Chang’E Satellites
Zhizhong Kang, Zhongfei Luo, Teng Hu, and Paolo Gamba, Fellow, IEEE

Abstract—Craters form the basis for lunar geological stratig-
raphy and yield significant information on terrain evolution and
the history of the solar system. Thus, the recognition of lunar
impact craters is an important branch of modern planetary stud-
ies. To resolve issues associated with the insufficient and inaccurate
extraction of quantitative information about lunar impact craters,
this study proposes an algorithm for the automatic extraction and
identification of impact craters that is based on CCD stereo cam-
era images and associated digital elevation model (DEM) data that
were acquired by the Chang’E satellites. The proposed procedure
works by jointly characterizing a crater candidate by means of its
2-D and 3-D features. Specifically, the novel procedure discussed in
this paper selects possible crater candidates based on the extrac-
tion of geometric features from optical images and improves the
final selection using 3-D features that are extracted from the DEM.
Additionally, this study addresses for the first time to accurately
identify different types of impact craters based on the 2-D and
3-D characteristics of the crater bottoms as well as topographic
transects across the craters. The proposed approach is tested on
multiple data sets that were acquired by the Chang’E satellites
and provides a very high level of accuracy in both the detection
and identification phases.

Index Terms—Aspect, digital elevation model (DEM), impact
crater, random sample consensus.

I. INTRODUCTION

T HE MOON is the closest celestial body to the Earth and
has long been a focus of the scientific community. At the

beginning of the Twenty-first century, leading countries and
organizations in the aerospace industry initiated a new round
of lunar exploration projects with the goal of returning to the
moon [1]. The coverage area and data resolution of China’s
“Chang’E-1” and “Chang’E-2” satellites have been improved
[2], and these satellites have provided reliable data for stud-
ies of the spatial differences and distributions of linear and
circular structures that are associated with impact craters [3]–
[7]. The “Chang’E-1” and “Chang’E-2” satellites have played a
prominent role in these studies because they provide relatively
fine-resolution multispectral and LIDAR data [2].
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Lunar exploration data have been used for a variety of
purposes. Montopoli et al. [3], [4] performed numerical sim-
ulations to investigate the capability of a microwave radio-
metric sounder (MiWaRS) of the European student moon
orbiter (ESMO) mission to determine the characteristics of the
Moon’s regolith subsurface and detect the presence of rocks
and ice under the near-surface layer. Hu et al. [5] proposed a
detailed method to compute the brightness temperature (TB)
over a lunar crater, while Hu et al. [6] performed a crossover
analysis and adjustment of Chang’E-1 laser altimeter data.
Additionally, Namiki et al. [7] studied the far-side gravitational
field of the moon using Selenological and Engineering Explorer
(SELENE) data.

The complex topography and geomorphology of the moon’s
surface have been studied by determining the distribution and
characteristics of linear and circular structures [8]–[12]. Impact
craters are the most typical geomorphological unit and the most
basic geomorphological features of the moon, and their mor-
phological characteristics and spatial distribution have been
examined in recent studies. Xie et al. [13] proposed a method
for detecting craters that is based on infrequently used morpho-
logical characteristics. Leroy et al. [14] developed a generalized
Hough transform (GHT)-based ellipse detection method for
identifying asteroid impact craters. Cheng et al. [15] used the
Conic Fitting method to automatically identify asteroid impact
craters in the framework of optical navigation by spacecraft
and were able to successfully identify 90% of the asteroid
impact craters and reduce the misclassification rate to less than
5%. By exploiting fuzzy edge detectors and the Hough/Radon
transform, Salamuniccar and Loncaric [16] proposed a crater
detection algorithm to search for impact craters that are not
in existing catalogues using digital topographic data. Magee
et al. [17] proposed a cross-correlation-based template match-
ing method and demonstrated it using test images. Burl et al.
[18] conducted experiments with data from a lunar mare region
that were acquired by the Clementine spacecraft using a contin-
uous scalable template matching method.

The focus of all of these studies was on detecting craters
as opposed to categorizing them, and no joint exploitation of
2-D and 3-D data was considered. Therefore, a novel algo-
rithm that is aimed at the simultaneous automatic extraction
and identification of impact craters using optical images from
the Chang’E stereo CCD camera and a corresponding digital
elevation model (DEM) is still necessary. The approach that is
proposed in this work selects possible crater candidates based

1939-1404 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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on geometric features that are extracted from optical images and
improves the final selection using 3-D features from the DEM.
Additionally, other 3-D features, including the slope and bot-
tom of the crater and a topographic transect across each crater,
are extracted and combined to identify the crater type, which is
important for geological and geomorphological studies of the
lunar surface.

The overall structure of the approach includes the following
processing steps, which are further described and discussed in
following sections.

1) A robust edge extraction operator and bilateral filter-
ing are employed to extract the edges of impact craters
from optical images. False edge points are removed by
looking for geometrical consistency between the gradient
direction of a candidate edge point and the light direction.

2) A RANdom SAmples Consensus (RANSAC) technique
is then applied to extract the best fitting circular shape
from the extracted edge points. The ratio between the
number of edge points inside the impact crater and the
number of theoretical edge points is used as a constraint
for the RANSAC process to remove false hypotheses.

3) DEM data are analyzed to remove crater candidates that
do not exhibit continuous 3-D features on the crater walls.
A novel use of the variance of difference of aspects
(DOA) is proposed.

4) The final extraction and identification of the selected
craters is performed based on other 3-D features, such as
abrupt changes of the normal vectors, point-cloud ratios
of the walls and bottom, the spatial distribution of the
3-D points at the crater bottom, and the 3-D character-
istics of the crater transects.

II. PRELIMINARY EXTRACTION OF CRATER CANDIDATES

FROM CCD CAMERA IMAGES

The preliminary extraction of crater candidates is performed
using images that were acquired by the CCD camera onboard
the Chang’E-1/2 satellites. Because of the sun illumination,
craters exhibit characteristic patterns in optical images [19] and
have distinctive edge features, such as nearly round edges; the
illuminated areas of impact craters are relatively bright, while
the nonilluminated areas are relatively dark. The first step in
this procedure is a denoising pretreatment (described in the
next section). The edges of potential impact craters are then
extracted. The third step is the removal of most of the nonedge
points based on the gradients of the edges, and the edge points
are then fitted using the RANSAC method.

A. Noise Removal and Edge Extraction

Noise patterns may exhibit similar patterns to those of real
edges, and the effectiveness of the extraction of impact craters
is determined by the accurate extraction of edges. To remove the
effects of noise, the input data sets are denoised using a bilat-
eral filter, which is a nonlinear, self-adaptive filter that considers
both spatial information and gray similarity; it also discards

Fig. 1. Effect of noise filtering on edge extraction. (a) Results from an
unfiltered image. (b) Results after noise removal.

Fig. 2. Edge extraction results for a typical impact crater.

Fig. 3. Removal of nonedge points from a potential impact crater image.
(a) Gradient direction of the impact crater. (b) Resulting image after the
nonedge points are removed.

noise while retaining edge information [20]. Thus, bilateral fil-
ters are effective for edge extraction. Fig. 1 shows an example
that uses the Robert edge extraction operator.

Edge extraction methods include the Robert, Sobel, Prewitt,
and Canny operators. After noise removal and the fitting
technique described below are applied, the results of these
techniques are not significantly different, although the Robert
operator requires the least computational work.

B. Removal of Nonedge Points

Even after the denoising procedure, a few false edges may
still be extracted due to illumination effects. For example, in
Fig. 2, the edges between regions A and B and between regions
C and D are true edges of the crater, whereas the edges between
regions B and C are false edges. False edges can be identified
and removed by exploiting the direction of the light, which is
computed based on the camera acquisition time and the view
angle with respect to the sun’s apparent position. The gray value
of a true edge decreases in the direction of the light, whereas the
gray value of a false edge may increase.
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Specifically, if the false edges are caused by the contrast
between the shadow and the illuminated regions inside the
crater, the gradient of this edge will be oriented in the oppo-
site direction to the light direction (Fig. 3). Accordingly, the
absolute value of the angle between the gradient and the light
direction will be greater than 90◦ (the value of the angle ranges
from −180◦ to 180◦). In contrast, the gradient direction for true
edges is expected to be the same as that of the light direction,
which in turn causes the absolute value of the angle between
the two to be less than 90◦. This condition is expressed in (1)

∇f · n > 0 (1)

where n represents the light direction vector, and ∇f is the gra-
dient on the edge that is detected at (x, y). The product in (1)
is a scalar product. If the gradient direction of an edge point
forms an angle that is less than 90◦ from the light direction, (1)
is satisfied. Otherwise, the edge point is considered to be a false
edge.

C. RANSAC-Based Edge Fitting

To complete the first phase of the crater candidate selection,
we can exploit the fact that impact craters are nearly round;
therefore, impact craters can be extracted using circle fitting.
Instead of using a standard least squares method, this study
uses the RANSAC approach [21] because it can be applied
to fit multiple crater candidates simultaneously. The RANSAC
algorithm is also more efficient because it does not use all of
the edge points for the fitting. Instead, the RANSAC algorithm
uses initial data that satisfy as few fitting conditions as possi-
ble and uses a consensus to expand the data set; in addition, the
RANSAC algorithm fits data by searching for models.

The process of fitting impact craters using the RANSAC
algorithm involves several steps.

1) First, three points are randomly selected from the edge
points because three points are sufficient to make a first
guess for the circle (2)

x2 + y2 + ax+ by + c = 0 (2)

where a = −2A, b = −2B, c = A2 +B2 −R2, (A,B)
are the coordinates of the center of the circle, and R is
the radius (units: meters).

2) The difference between the radius of the fitted circle and
the distance between the extracted ith edge point and the
center (di) is then computed as follows:

Δdi = |di −R| (3)

3) Finally, all of the points for which Δd < Δdth, where
Δdth is a selected threshold value, are labeled as edge
points inside the crater. The number (N ) of points that
satisfies Δd < Δdth can be used as a criterion to evaluate
the hypothesis model in the original RANSAC frame-
work. However, in the case that the data points contain
multiple models, it is likely that the model that has the
most inliers is a false model [Fig. 4(b)]. In the image, the
number of edge points should be approximately equal to

Fig. 4. Fitting procedure for impact crater edges. (a) Candidate craters.
(b) Fitting procedure using the number of points that pass the verification pro-
cedure as a criterion. (c) Fitting procedure using the ratio of the number of the
edge points inside the impact crater to the number of theoretical edge points as
a criterion.

the length of the edge (in pixels). Fig. 4(b) shows that
if the circle hypothesis is false, there is a low expecta-
tion that the ratio of the number of edge points inside the
impact crater to the number of theoretical edge points (the
perimeter L of the fitted circle) is equal to 1. This ratio is
computed using (4) and can be employed as the criterion
for hypothesis testing in the following processing steps.
Fig. 4(c) shows that this procedure eventually selects only
the correct circles

p = N/2πR× 100%. (4)

a) The hypothesis testing process is repeated until the
number of sampling iterations reaches a predefined
threshold, which is called T

T =
(log (1− p))

log (1− (1− ε)
n
)

(5)

where p is the confidence probability, and ε is the out-
lier rate, which is computed as the number of outliers
in the data divided by the number of data points.

b) The circle model with the largest value of the ratio p is
selected as the best model, and all inlier points that
are consistent with this model are used to compute
the optimal model parameters through least-squares
adjustment.

c) The edge points that are inside the current impact
crater are removed from the initial edge points. The
procedure then restarts from the first step to fit another
crater.

III. REMOVAL OF INCORRECTLY EXTRACTED IMPACT

CRATERS BASED ON THE CONTINUITY OF ASPECTS OF

THE CRATER WALLS

The extraction of impact craters from CCD camera images is
primarily based on the image features of the crater. However,
other structures on the moon’s surface, such as valleys and
faults, may result in similar 2-D geometric features. Therefore,
incorrect impact crater extractions may occur when the craters
are extracted solely based on images. Impact craters are ring-
shaped, and each crater wall has a 360◦ rotational symmetry.
Incorrect extraction results can be removed based on whether
or not the distribution of the aspects of the impact crater wall
points is continuous. First, the DEM data that correspond to a
potential impact crater are extracted, and the range of the crater
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wall is determined. The continuity of the aspects of the crater
wall points is then analyzed, and impact craters with unusual
shapes are removed.

A. Determination of the Ranges of Crater Walls and
Calculation of Aspects

The slope reflects the degree of inclination of a terrain. The
relatively steep slopes on the inside of an impact crater range
have inclinations from approximately 25◦ to 50◦, and the gentle
slopes on the outside of the craters range from approximately 3◦

to 8◦ [22]. The slope of the crater wall is steepest from the out-
side edge to the inside. Moreover, the cross section of a crater
wall is usually symmetrical. The slopes of the impact craters
can be computed using the DEM data, and the point-cloud data
within the range of each crater wall are obtained by limiting the
threshold values of the slope (the default range is set between
25◦ and 50◦).

The slopes and aspects are then computed [23]. The slope
(S) and aspect (A) of a point on the surface are functions of the
rates of change of the elevation of the terrain surface function
Z = f(x, y) (unit: meters) in the east–west and south–north
directions

⎧⎨
⎩
S = arctan

√
f2
x + f2

y

A = 270◦ − arctan
fy
fx

+ 90◦ fx
|fx|

(6)

where fx represents the rate of change of the elevation in the
east–west direction, and fy represents the rate of change of the
elevation in the south–north direction. The slope is computed
using the second-order difference in the horizontal and vertical
directions. Only points with slopes in the range 25◦–50◦ are
extracted.

B. Analysis of the Continuity of the Aspects of the Crater Walls

Fig. 5(a) and (b) shows an impact crater and a simulated
nonimpact structure, respectively. Most impact craters are ring-
shaped, so the values of the aspects of the crater wall points are
continuously distributed within the range 0◦–360◦. The red line
in Fig. 5(c) shows a continuous distribution of the aspect values
of the crater wall points, although the numbers of points with
similar aspect values clearly varies. The blue line in Fig. 5(c)
shows that a nonimpact crater lacks wall points with aspect val-
ues from 20◦ to 150◦. However, it is difficult to evaluate the
continuity of the distribution of aspect values that is illustrated
in Fig. 5(c).

To address this issue, the aspects of the crater wall points are
sorted within the range 0◦–360◦, and the differences between
the adjacent values of the sorted aspects (DOAs) are computed.
Statistical calculations are then performed on the DOA values.
Fig. 5(d) shows that the DOA distribution of an impact crater
is concentrated approximately 0◦, while the DOA distribution
of the nonimpact structure has a peak at 146◦, which makes it
clearly recognizable.

To statistically characterize the DOA distribution, its stan-
dard deviation σ is computed. The DOA σ values for the impact

Fig. 5. Significant differences in the aspects of adjacent points in impact craters
and nonimpact craters. (a) Impact crater. (b) Nonimpact crater. (c) Histogram
of the distributions of the aspects of an impact crater and a nonimpact crater.
(d) Histogram of the DOA of an impact crater and a nonimpact crater.

Fig. 6. Topographic transects across complex craters. (a) Transect across a flat-
bottomed type complex impact crater. (b) Transect across a central uplift type
complex impact crater.

and nonimpact crater walls in Fig. 5 are equal to 0.20 and 37.67,
respectively, which illustrates the use of the DOA variance as a
criterion to discriminate between the two crater types.



KANG et al.: AUTOMATIC EXTRACTION AND IDENTIFICATION OF LUNAR IMPACT CRATERS 4755

TABLE I
CLASSIFICATION OF IMPACT CRATERS

IV. CALCULATION OF THE PARAMETERS OF IMPACT

CRATERS AND IDENTIFICATION OF TYPES

OF IMPACT CRATERS

A. Calculation of Parameters

In contrast to image data, DEM data can be used to illus-
trate the 3-D topographic structure of an impact crater; thus,
DEM data are suitable for studies of the extraction of quantita-
tive information about impact craters as well as studies of the
identification of impact craters. The normal vectors of the edge
points of an impact crater change abruptly compared with those
of the wall points, so the edge points can be extracted by calcu-
lating the rates of change of the normal vectors. Impact craters
have round edges, and the edge points were fitted using the least
squares method to calculate the basic parameters of the impact
crater.

1) Calculation of the Normal Vectors of Points: When the
value of N (the number of neighboring points) and a point pi
are given, the approximate tangent plane of point pi can be
obtained through its neighboring point sets qj (1 ≤ j ≤ N ).
The covariance matrix c was computed using the neighboring
points (7). The normal vector is the unitized eigenvector that
corresponds to the least eigenvalue of the covariance matrix
c, which was determined by the principal component analysis
(PCA) algorithm [24]

c =
∑N

j=1
(xj − xi)

T
(xj − xi) (7)

where xi represents the coordinates of the point pi, and xj

denotes the coordinates of the neighboring point of pi.
2) Extraction and Fitting of Edge Points Based on Abrupt

Changes of the Normal Vectors: The rate of change of a

normal vector (k) can be expressed as

⎧⎪⎪⎨
⎪⎪⎩

k =
√

d2x + d2y

dx = arccos(c6 · c4)
dy = arccos(c8 · c2)

(8)

where dx represents the rate of change of the normal vector in
the east–west direction, dy represents the rate of change of the
normal vector in the south–north direction, and c represents the
unit normal vector, with c6 and c4 representing the neighbor-
ing points in the west–east direction and c8 and c2 representing
the neighboring points in the north–south direction. The key to
calculating k is in the calculation of dx and dy; similar to cal-
culating the slopes, dx and dy were also solved within a local
range.

The distribution of angles between the normal vectors of the
crater wall points and the horizontal plane was concentrated,
and the angles between the normal vectors of the edge points
and that of the horizontal plane are mostly concentrated approx-
imately 90◦. The difference between 90◦ and the mean angle
between the point-cloud normal vector of the crater wall and
the surface can be used as the threshold value of the rate of
change of the normal vector. The rate of change of the normal
vector of an edge point should satisfy the following condition

k ≤ |π/2− θ0| (9)

where θ0 is the threshold value that represents the difference
between 90◦ and the mean angle between the point-cloud nor-
mal vector of the crater wall and the surface. The edge points
are extracted and fitted using the least squares method. The
circle equation is shown in (2). After solving for a, b, and c,
the parameters of the circle can also be solved. We solve the
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Fig. 7. Extraction of impact craters from simulated images with different noise
standard deviation. (a) 2 pixels. (b) 3 pixels. (c) 6 pixels. (d) Histogram of
correct detections with increasing noise standard deviation.

following equation:
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c
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(10)

where (x, y) represents the coordinates of the edge point X, Y.

B. Identification of the Types of Impact Craters Based on Their
Section Lines

Impact craters are generally classified into three major types:
simple bowl-shaped impact craters, complex impact craters
(including central uplift craters, and flat-bottomed complex
impact craters) and monocyclic or polycyclic impact craters
(Table I). Crater types can be identified based on the areas of
the crater bottoms as well as several features of topographic
transect across the crater. Because monocyclic or polycyclic
impact basins have extremely complicated structures, this study

Fig. 8. False alarms of noncraters from simulated images with different noise
standard deviation. (a) 2 pixels. (b) 3 pixels. (c) 6 pixels. (d) Histogram of false
alarms with increasing noise standard deviation.

classified impact craters into “simple” and “complex” types
(including central uplift and flat-bottomed complex impact
crater types).

The ratio of the area of the bottom of a complex impact crater
to its total area is larger than that of a simple impact crater; the
area of the bottom of a complex impact crater accounts for more
than 20% of its total area, whereas the area of the bottom of a
simple impact crater is less than 20% of its total area. To com-
pute the areas of an impact crater and its bottom, we generate
a triangulated irregular network (TIN) for each point segment
and sum the areas of the triangles.

The two types of complex impact craters (flat-bottomed and
central uplift) can be identified based on features of their topo-
graphic transects (Fig. 6). A transect across a flat-bottomed
impact crater has two peaks that are generally located at the
two ends, whereas a transect across a central uplift impact crater
generally has at least three peaks. The type of complex impact
crater can be determined based on the number and locations of
the peaks on its transect.
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Fig. 9. Extraction of impact craters from six real optical images (see the
text). (a) Experimental image 1. (b) Edge extraction of image 1. (c) Extraction
results of image 1. (d) Experimental image 2. (e) Edge extraction of image 2.
(f) Extraction result of image 2. (g) Experimental image 3. (h) Edge extraction
of image 3. (i) Extraction result of image 3. (j) Experimental image 4. (k) Edge
extraction of image 4. (l) Extraction result of image 4. (m) Experimental
image 5. (n) Edge extraction of image 5. (o) Extraction result of image 5.
(p) Experimental image 6. (q) Edge extraction of image 6. (r) Extraction result
of image 6.

V. EXPERIMENTAL RESULTS

The proposed approach was tested on both synthetic and real
data sets. The real data set comprises six images and DEM data
obtained from the Chinese lunar exploration project acquired
by the Chang’E-1 and Chang’E-2 satellites. The images were
acquired by a three-line array CCD stereo camera in a push-
broom fashion. The orbit height of Chang’E-1 was 200-km
above the lunar surface, so the swath width was 60 km,
and the spatial resolution was 120 m. The orbit height of
Chang’E-2 was 100-km above the lunar surface; accordingly,

TABLE II
CRATER EXTRACTION RESULTS

Fig. 10. Extraction of craters from a Chang’E-1 optical image.

the swath width was 43 km, and the spatial resolution was
7 m. The DEM was generated automatically from the images
that were acquired by the image array of the forward view,
backward view, and nadir view of the Chang’E-1 CCD stereo
camera using the three-line array photogrammetric method.
The DEM has horizontal and vertical accuracies of 192 and
120 m, respectively, and a spatial resolution of 500 m (website:
http://moon.bao.ac.cn/ceweb/datasrv/dmsce1.jsp).

To investigate the dependence of the proposed algorithm on
the DEM resolution, DEM data with lower spatial resolutions
(i.e., 1000 and 1500 m) were downsampled from the 500-m res-
olution data. Moreover, 1800 elliptical impact craters [partially
illustrated in Fig. 7(a–c)] were simulated with random eccen-
tricities (0–1 in steps of 0.1), orientations (0◦–180◦ in steps of
1◦), and sizes (radii from 20 to 25 pixels) to verify the proposed
image-based extraction method for impact craters. One thou-
sand noncraters [rectangle; partially illustrated in Fig. 8(a)–(c)]
were also simulated with orientations (0◦– 180◦ in steps of 1◦),
and sizes (radii from 20 to 25 pixels). Noise with different vari-
ances (0–10 pixels) was also added to the edge points of the
simulated impact craters and noncraters.

A. Results of the Extraction of Simulated Impact Craters

The percentage of correct detections and false alarms for the
simulated craters and noncraters was statistically analyzed as a
function of the noise standard deviation Fig. 7(a), (b), (c) shows
the extraction of the simulated craters with noise standard devi-
ation of 2, 3, and 6 pixels, respectively. The correct detections
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TABLE III
STATISTICAL DOAS OF CRATERS EXTRACTED FROM THE CHANG’E-1 DATA SET SHOWN IN FIG. 10

TABLE IV
PARAMETERS AND TYPES OF CRATERS EXTRACTED FROM THE DATA SET SHOWN IN FIG. 10 (500-M RESOLUTION DEM)

were determined in terms of the differences between the sim-
ulated and computed parameters of elliptical impact craters,
i.e., the major axis, minor axis, center, and orientation. The
corresponding thresholds were kept fixed to 3 pixels for all dif-
ferences/distances, and 10◦ for the orientation difference. As
expected, the percentage of correct detections decreases as the

noise standard deviation increases [Fig. 7(d)]. Assuming 80%
as the minimum value for a successful extraction, the graph
shows that the maximum noise standard deviation manageable
by the proposed approach is 5 pixels.

The RANSAC framework was implemented to fit elliptical
impact craters from the edge points of simulated noncraters.
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TABLE V
PARAMETERS AND TYPES OF EXPERIMENTAL CRATERS (1000-M RESOLUTION DEM)

The hypothesis models passed the verification process proposed
in Section II-C were identified as false alarms. The percentage
of false alarms increases with the increase of noise standard
deviation [Fig. 8(d)]. Assuming 20% as the maximum value
for false alarms, the graph shows that the maximum standard
deviation is 4 pixels. Figs. 7(a) and 8(a) also show that when
the noise standard deviation was set as a reasonable value,
i.e., 2 pixels, the percentages of correct detections and false
alarms are, respectively, 100% and 0%, which demonstrates
that the eccentricity and orientation have negligible impacts on
the detection.

B. Results of the Extraction of Impact Craters from Chang’E
Optical Images

Finally, impact craters were automatically extracted from
the six optical images described above. Three images were
acquired by the Chang’E-1 satellite [Fig. 9(a), (d), (g)], and
three were acquired by the Chang’E-2 satellite [Fig. 9(j), (m),
(p)] in the same areas as the images that were acquired by the
Chang’E-1 satellite. These six images covered areas between
32 ◦W and 59 ◦W latitude and 41 ◦N and 55 ◦S longitude. Each
of the six images underwent filtering, edge extraction, and fit-
ting using the RANSAC method. Because the resolution of the
DEM data was lower than that of the images, the size of suc-
cessfully extracted and identified craters is dependent on the
resolution of the DEM data. The spatial resolution of the DEM
data that were employed was 500 m; thus, only impact craters
with radii of more than 4 km were extracted. Fig. 9 shows the
results of extracting the impact craters from the images.

Table II shows the extraction results of the experimen-
tal images. “Manual extraction” refers to impact craters that
were obtained by visual identification, “automatic extraction”
refers to impact craters that were obtained using the algorithm,
and “false-extraction” refers to nonimpact craters that were

extracted by the algorithm. The results show that all of auto-
matically extracted craters in the Chang’E-2 images are con-
sistent with those from the manual extraction. However, in
the Chang’E-1 images, the automatically extracted crater that
is highlighted by the white rectangle in Fig. 9(i) is inconsis-
tent with the manual extraction results. The difference between
the performance of the proposed algorithm on the Chang’E-1
images (120 m resolution) and the Chang’E-2 images (7 m res-
olution) indicates that a higher image resolution can improve
the robustness of the extraction of impact craters.

C. Removal of Incorrectly Extracted Impact Craters

To better explain the effects of jointly using 2-D and 3-
D data, Fig. 10 considers the nine impact craters that were
extracted from a Chang’E-1 data set. The craters are numbered
from left to right and from top to bottom (c1–c9).

To exploit 3-D data, the point-cloud data of the impact craters
are extracted from the corresponding DEM data at different res-
olutions (i.e., 500, 1000, and 1500 m). We then extract points on
the impact crater walls with slope angles between 25◦ and 50◦.
The aspects of the crater wall points are then sorted, and the dif-
ferences between the adjacent values of the sorted aspects are
calculated. As presented in Section III-B, the standard deviation
σ of the DOA of each crater is computed (Table III). The results
show that the standard deviations of the DOAs of craters c2
and c8 that were computed using the 500-m resolution DEM
data were significantly larger than those of the other craters,
so the two craters are identified as incorrectly extracted craters.
Table III also indicates that the standard deviation σ increases
as the DEM resolution decreases. As a result, the standard
deviation of the DOA of crater c2 that was computed using the
1500-m resolution DEM data becomes less abnormal, which
in turn shows that a lower DEM resolution may degrade the
robustness of the identification of incorrectly extracted craters.
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TABLE VI
PARAMETERS AND TYPES OF EXPERIMENTAL CRATERS (1500-M RESOLUTION DEM)

Compared with the results presented in Section V-B, impact
crater c8 is identified as an incorrectly extracted impact crater,
which is consistent with the manual identification. However, the
identification of impact crater c2 as a false crater is inconsistent
with the manual image identification results. A detailed analysis
of the distribution of the DOAs that were computed using the
corresponding DEM data shows that impact crater c2 is a false
impact crater and that the visual identification of this crater was
erroneous. These results highlight the usefulness of DEM data
for impact crater identification.

D. Calculation of the Parameters of Impact Craters and
Identification of the Type of Impact Crater

To classify the impact craters, the DEM data of the seven
identified impact craters are used to extract the rates of change
of the normal vectors and the crater edge points. Finally, the
ratios of the impact crater bottoms with respect to all of the
points within the radius of the crater can be computed. If an
impact crater is classified as a “complex” type, the morpho-
logical characteristics of its topographic transect are used to
determine whether it is a flat-bottomed impact crater or a central
uplift impact crater.

Tables IV, V and VI show the results for different DEM res-
olutions. Because of their small sizes, the parameters of craters
c1 and c3 were not calculated for the coarse DEMs. The results
show that the impact crater types that were identified using
the 500-m resolution DEM are consistent with those that were
identified using the 1000-m resolution and 1500-m resolution
DEMs. As a result, impact craters c3, c5, c9, and c10 are clas-
sified as complex craters. Because crater c9 has two relatively
clear peaks in its transect and contains a significantly uplifted
region at the bottom, it is further classified as a central uplift
impact crater.

VI. CONCLUSION

This study introduces an automatic algorithm that uses opti-
cal data sets and associated DEM data to improve the detection
of lunar impact craters and provides the first automatic classifi-
cation of lunar impact craters. Data sets that were acquired by
the Chang’E-1 and Chang’E-2 satellites were used to validate
the algorithms.

The experimental results show that the joint use of 2-D and
3-D data is resolution dependent; the results from the
Chang’E-2 images were better than the results from
the Chang’E-1 images. The results also indicate that the pro-
posed standard variance of the DOA is an excellent 3-D
quantitative index that can be used to extract impact craters.

The main limitation of this study is that it primarily iden-
tifies “simple” and “complex” impact craters. Future research
will thus focus on performing the extraction and identifica-
tion of monocyclic or polycyclic basins and other geological
structures. Moreover, because the amplitude of the brightness
temperature that is observed by a passive radiometer depends
on the slope angle [10], we plan to use this additional informa-
tion to further improve the extraction and identification of lunar
craters.
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ABSTRACT: 

The lunar terrain can show its collision and volcanic history. The lunar surface roughness can give a deep indication of the effects of 

lunar surface magma, sedimentation and uplift. This paper aims to get different information from the roughness through different data 

sources. Besides introducing the classical Root-mean-square height method and Morphological Surface Roughness (MSR) algorithm, 

this paper takes the area of the Jurassic mountain uplift in the Sinus Iridum and the Plato Crater area as experimental areas. And then 

make the comparison and contrast of the lunar roughness derived from LRO's DEM and CE-2 DOM. The experimental results show 

that the roughness obtained by the traditional roughness calculation method reflect the ups and downs of the topography, while the 

results obtained by morphological surface roughness algorithm show the smoothness of the lunar surface. So, we can first use the 

surface fluctuation situation derived from RMSH to select the landing area range which ensures the lands are gentle. Then the 

morphological results determine whether the landing area is suitable for the detector walking and observing. The results obtained at 

two different scales provide a more complete evaluation system for selecting the landing site of the lunar probe. 

1. INTRODUCTION

Because of long time in the lunar geologic age, the moon is 

relatively cold, rigid and complete. And the surface has not been 

affected by plate movement, atmosphere, water or life, so the 

moon keeps the geological record for nearly 4 billion years 

(Jolliff B L,2006). The surface roughness is the ruggedness in the 

meaning of topography. In a certain research scope, it refers to a 

mathematical expression of the surface fluctuation condition at 

an analysis scale. Meantime it can reflect the rolling extent of 

surface. The roughness records the geologic activities such as 

erosion, sedimentation, accumulation and filling of the planets. 

And it is one of the important parameters to evaluate the safety 

of ground engineering. At the same time, it can also provide an 

important reference for finding a soft landing field of the 

surveyed spacecraft in the appropriate terrain (Shepard M 

K,2001). As a result of the sun weathered, the migration of moon 

shell by the internal stress, and ups and downs on the surface of 

the moon by the external impact, the trances generated on the 

lunar surface is the roughness. So it is possible to analyse the 

evolution history, the internal stress and the external impact of 

the lunar according to the roughness. 

For the calculation of the lunar surface roughness, Michael K. 

Shepard proposes Root-mean-square height, Root-mean-square 

deviation, Root-mean-square slope, Autocorrelation length, 

Median and absolute slope and some other methods (Shepard M 

K,2001). Many domestic and foreign scholars also use the Hurst 

index as a measurement of the lunar roughness (Orosei, R et 

al,2003). These above methods are suitable for data with terrain 

elevation values. For grayscale binary images, in recent years 

Cao, et al. proposes a morphological algorithm to calculate the 

lunar roughness (W. Cao et al,2014). The roughness of three 

specific lunar surface highlands has been studied，and the result 

shows the roughness plays an important role in studying the 

material composition of the lunar surface and the geological age 

of different stratigraphic units (Yokota Y et al.2008). The 

roughness of Mare Imbrium proves that there is a correlation 

between the lunar roughness and the lithology of the geological 

units (Yan Yanzi et al, 2014). The surface roughness of each 

parameter in the horizontal section of Sinus Iridum has been 

calculated, and the geomorphological features of the area are 

interpreted (Xi Xiaoxun et al, 2012). Few people use multi-

source data to compare and analyse the old and new methods to 

searching new information. 

In this paper, we selected the tail of Montes Jura in the eastern of 

Sinus Iridum and the Crater Plato as the study areas. Based on 

the Digital Elevation Model of LRO and the Digital Orthophoto 

Map of Chang'e II, the roughness is calculated respectively by 

Root-mean-square height and Morphological Surface Roughness 

algorithm. Then we compare the two different results to obtain 

the characteristics and application scope of the two roughness 

algorithms. It can be more conducive to select the appropriate 

landing point for the lunar probe in the future. 

2. DATA AND METHOD

2.1 Research area 

In this paper, Sinus Iridum and Crater Plato the two large craters, 

which are created by "Heavy Bombardment" in Mare Imbrium, 

are selected as the experimental areas. The whole area is filled 

with mare basalt after the heavy impact. 

Sinus Iridum is an important bay in the northwest of Mare 

Imbrium with a central latitude and longitude of N44 °6 ', W 

31°30 ', a diameter of 259 km and a bottom area of 47750.927 

km2. The northwest of Sinus Iridum is surrounded by the Montes 

Jura and is adjacent to the craters of crater Bianchini and crater 

Maupertuis (Chen Shenbo, et al,2010). And it is the landing point 

for CE-3 satellite. This paper focuses on the tail of the southeast 

of Montes Jura which is covered by various topography, such as 

plains, mountains and impact craters. This area is mainly covered 

by ridges. And some sporadic small ejecta are also scattered. So 

the various geometric roughness features can be comprehensive 

analysed. 

Crater Plato is a large pit located between the north of Mare 

Imbrium and Mare Frigoris, and its west is Montes Jura and Sinus 

Iridum (John W M G, 1972). The center position is about N51 ° 

6 ', W9 ° 5'. (USGS, 2008). The crater is an irregularly polygonal, 

with a diameter of about 106 km and an average crater depth of 
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1.8 km. It is now widely believed that the Crater Plato is 

generated after Mare Imbrium event, and the crater age is about 

3.84Ga. The bottom of crater is full of basal.  
 

 

 
 

Figure 1.  DOM of the experimental area 

 

2.2 Roughness calculation Based on DEM 

2.2.1 Data  

The data used in this study is DEM whose accuracy is 30 m from 

LRO (Lunar Reconnaissance Orbiter). LRO is the first mission 

of the National Aeronautical and Space Pioneer Robot Program, 

which was implemented on June 18, 2009. LOLA is the laser 

altimeter of the six scientific instruments（Smith, D.et al,2010a; 

Smith, D.et al,2010b）. LOLA has 5 beams, with a nominal 

accuracy of 10 cm. It can be used to characterize the micro-

geomorphic features on the lunar surface and select the future 

landing point for robots and human beings (Rosenburg et al, 

2011). Using the global elevation data obtained by the sensor, 

lunar surface DEM is produced. The three-dimensional rendering 

images of the experimental area DEM as shown below. 

 

 

 
 

  
 

Figure 2.  DEM Height rendering images of the tail of Montes 

Jura southeast (up) and Crater Plato (down)  

 

2.2.2 Root-mean-square height 

 Shepard et al. have proposed several parameters for quantifying 

the planet’s surface roughness. These parameters are usually 

defined on the basis of elevation data. The relatively commonly 

used and simple ones are the Root-mean-square height and Root-

mean-square deviation. The Root-mean-square height shows the 

extent of the surface height deviating from the average height, 

which is expressed in the vertical direction. While the Root-

mean-square deviation shows the change in the horizontal height 

which uses the structural function. The meaning of the two 

method is more or less the same, so this paper selects the Root-

mean-square height for roughness calculation. 

 

In general, a best fit linear function is subtracted from the DEM 

data. Through simplifying, a series of height values with the zero 

average are gotten. Expressed as 

 

 

ξ = [
1

𝑛−1
∑ (𝑧(𝑥𝑖) − 𝑧̅)2𝑛

𝑖=1 ]
1 2⁄

                       (1) 

 

 
where   n is the number of sample points 

z(𝑥𝑖) is the height of the point 𝑥𝑖 in the lunar surface 

𝑧̅ is the average of all elevation 

  

In this paper, the raster image is read line by line to sample. And 

the 3*3 window is used to calculate the whole DEM data. The 

average value of all the pixels in the window is calculated. Then 

the formula (1) is used to calculate the Root-mean-square height 

value of the central pixel to replace its original value. 

 

2.2.3 Results  

The roughness based on the two experimental DEM regions is 

calculated by the Root-mean-square height, and the results are 

shown in Fig.3. It can be seen that the result derived from the 

traditional method expresses the extent of the terrain ups and 

downs. The lunar roughness shows the dichotomy characteristic. 

That is, the lunar mare roughness is low, while roughness of the 

highland is high. The higher values of roughness are mainly 

distributed at the edge of the craters, which own the changeable 

terrain. While the lower roughness is mainly distributed in plains, 

because the terrain is gentle and the terrestrial changes are small. 

 
The roughness both in the ridges and the fissures is high in the 

Montes Jura region. The mountain area is not all covered by the 

high roughness, there are also some gentle areas that own low 
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roughness among the mountains. The roughness of Crater Plato 

indicates that there is a clear boundary between the bottom area 

and the edge. And the boundary between the ejecta and the edge 

is also clear. The bottom, the wall, the edge and the ejecta can be 

clearly distinguished by using the roughness image. And it can 

be seen that some sporadic small impact craters exist at the 

bottom with a large rough value. 

 

 

 
 

 
high                           low 

 
Figure 3. RMSH results images of the tail of Montes Jura 

southeast (up) and Crater Plato (down) 

 

2.3 Roughness calculation Based on DOM 

2.3.1 Data  

CE-2 satellite successfully launched on October 1, 2010. Besides 

six goals had been successful completed, a number of important 

scientific data had gotten until April 1, 2011. CE-2 loads 5 

categories of scientific detection equipment: CCD stereo camera, 

laser altimeter, γ / X-ray spectrometer, microwave detectors and 

space environment detector. During the half year flighting around 

the moon, the CCD stereo camera takes photos of the global 

surface to obtain the lunar digital orthophoto map with a spatial 

resolution of 7 m (Ye J et al. 2013). The CE-2 DOM of the two 

experimental areas are shown as Figure 4. 

 

 

 
 

 
 

Figure 4. CE-2 DOM of the tail of Montes Jura southeast (up) 

and Crater Plato (down) 

 

2.3.2 Morphological Surface Roughness  

In this paper, we use the Morphological Surface Roughness 

proposed by W. Cao to deal with the DOM of CE-2. Unlike 

traditional roughness calculations based on ground elevation 

values, the algorithm utilizes  grey-scale images. The surface 

roughness of the grey-scale images is defined as the difference 

between Morphological Closing operator and Morphological 

Opening operator. And it is usually constructed by the highest 

and lowest points of the structuring element’s (SE) shape (P. 

Soille, 2013; W.Gonzalez and RE Woods, 2013). As an 

important theory of geological applications, Solide puts forward 

two common morphological operators: morphological opening 

and morphological closing (P. Soille, 2013). MO operator 

removes the redundant structures created by erosion. The MO 

function γ is defined as follows: 

 

 

[𝛾𝐵(𝑓)](𝑥) = 𝛿𝐵[𝜀𝐵(𝑓)]          (2) 
 

 
MC solves the problem of dilation by implementing erosion in 

the dilated surface.MC function ∅ is defined as  

 

 

[∅𝐵(𝑓)](𝑥) = 𝜀𝐵[𝛿𝐵(𝑓)]          (3) 
 

 
Where        [𝜀𝐵(𝑓)](𝑥) = min

𝑏∈𝐵
𝑓(𝑥 + 𝑏)        (4) 

 

 [𝛿𝐵(𝑓)](𝑥) = max
𝑏∈𝐵

𝑓(𝑥 + 𝑏)        (5) 

 
Using the two operations two types of roughness forms can be 
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produced. MO operation extracts the convex area while MC 

represents roughness characteristics by the concave distribution. 

The difference between the two surfaces is defined as the terrain 

surface roughness, the formula is as follows: 

 

 

𝑅𝑀𝑆𝑅 = ∅𝐵(𝑓) − 𝛾𝐵(𝑓)           (6) 

 
2.3.3 Results   

The roughness results obtained by using the MSR algorithm are 

shown as figure 5. We can know that the roughness obtained by 

MSR is described on a smaller scale, which is not related much 

to the overall fluctuation of the area. It is a description of the 

roughness in a small range. Except a crater shows high 

roughness, the roughness value of Montes Jura other regions is 

low. This area is in a steady condition. In spite of that, the 

roughness difference between mountains and plains can also be 

clearly distinguished. However, the roughness at the bottom of 

the crater with light fluctuation is high, and the ejecta around the 

crater has the high roughness. There are also some unusual low 

roughness points in the region, the following part will describe 

the reason in detail. 

 

 
 

 
       high                              low 

 
Figure 5. Results by using MSR of the tail of Montes Jura 

southeast (up) and Crater Plato (down) 

 

3. RESULTS AND DISCUSSION  

3.1 Montes Jura 

The distribution of Montes Jura and every ridge can be clearly 

observed on the RMSH image. The roughness values of the 

mountain area are high, especially in the areas which the 

elevation of ridge is jumped. However, it is not obvious found on 

the MSR image. Compared with the lunar mare, the roughness of 

the mountain area is high, but the extent of roughness is not a lot. 

Because the morphological algorithm eventually shows the 

smoothness of the surface. As long as the lithology of the region 

is the same one, the surface physical properties tend to be 

consistent, so the range of the roughness change is small. In 

addition, the roughness of lunar mare is low by using RMSH, 

while on the MSR image there are some high roughness areas 

existing on the surface because of the unsmooth basalt. The 

correlation between the lunar roughness and the lithology of the 

geological unit reflects the influence of the geological effect on 

the formation and evolution of the lunar landscape. 
 

 

 
 

 
 

Figure 6. Results by using RMSH (up) and MSR (down) of the 

tail of Montes Jura southeast  

 

3.2 Crater Plato 

The distribution of the crater ejecta can be seen apparently in the 

traditional RMSH image. The bottom, the wall, the edge and the 

ejecta four parts of the crater can be clearly distinguished. But the 

ejecta appearance cannot be seen distinctly in MSR image. 

Because the ejecta material is in cluttered distribution, the overall 

roughness of the ejecta area is high. The terrain should be gentle 

at the bottom of the crater, but some high roughness also exists 

at the bottom of the plain. That indicates that terrain of the crater 

bottom is not rugged, but the rock surface is rough. Compared 

with the results obtained by the RMSH, an anomalous region is 

found in the northern part of the crater on the MSR result. The 

area is at the edge of the crater, and the roughness value should 

be similar to the other area edges, but the roughness obtained 

from the image is extremely low. So that is presumably related to 

the lithology of the rock at the edge. 

 
The lunar surface minerals possess their own unique diagnostic 

characteristic absorption bands. By using these bands directly or 

combining them, the minerals can be identified (Lucey et al, 

1995). making use of the spectral data of SELENE, the band 
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ratioing is used to reflect the characteristic spectra of the various 

rocks according to the reflectivity of different rocks (Fischer E M 

et al, 1996). After several tests, high reflectance of olivine is 

found at the edge of the crater. Olivine has the glass luster, and 

its surface is relatively smooth so that the reflectance is high. For 

this reason, the area is bright on the DOM image. And the 

roughness based on images using MRS will show the low value 

on the surface. 

 

 
 

 
 

Figure 7. Results by using RMSH (up) and MSR (down) of 

Crater Plato 

 

 
 

Figure 8. Reflectance spectra of northern cape of Crater Plato 

edge  

 

4. CONCLUSIONS 

Data used in this paper including DEM of LRO, CE-2 DOM and 

the MI data of SELENE. And these data are processed by RMSH, 

MSR and Band Ratioing respectively. From the results, it is 

found that the fluctuation largely determines the value of RMSH 

roughness while lightly effects on the roughness gotten form 

MSR. The value of the morphological roughness reflects the 

smooth and rough of the area surface, which is influenced by the 

lithology of the land largely. Compared with RMSH method, 

MSR uses a smaller scale. Since MSR calculation is based on the 

grey-scale image, the illumination becomes one important 

influencing factor. The reflectivity of different lunar substances 

is various, so we can gain more information from the MSR results 

reflected by the illumination. 

 

Based on the above conclusions, we can use the roughness to 

select the probe’s suitable landing points. According to the 

surface fluctuation situation derived from RMSH, the landing 

area range can be settled. This can ensure that the lunar probe 

lands are in a gentle area. And then use the morphological results 

of the surface smoothness to determine whether the roughness of 

the landing area is suitable for the detector walking and 

observing. The combination of the two results provides a new 

way for selecting future planetary probe landing points. 
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ABSTRACT: 

In the detection of the moon, the visible and near-infrared reflectance data of the lunar material are important information sources for 

lunar chemical substances and mineral inversion. The Interferometer Imaging Spectrometer (IIM) aboard the Chang'E-1 lunar orbiter 

is the first multispectral imaging spectrometer for Chinese lunar missions. In this paper, we use the mosaic image of global moon 

acquired by the Wide-angle Camera (WAC) of the Lunar Reconnaissance Orbiter Camera (LROC) to realize the accurate registration 

of Chang'E-1 IIM hyperspectral images. Due to the lack of GCPs, the emphasis of this work is to find a huge number of homologous 

points. The method proposed in this paper is to obtain several homologous points by manually matching, and then we utilize those 

points to calculate the initial homography matrix of LROC-WAC image and IIM image. This matrix is used to predict the area on 

IIM image where homologous points may be located, and the locations of the homologous points are determined by the orientation 

correlation in frequency domain. Finally we save the parts of homologous points which satisfied the conversion relationship of initial 

homography matrix to calculate homography matrix again. We use this iterative way to obtain a more accurate location of the 

homologous points. In this process, we take into account that the geometric deformations of different regions on IIM image are quite 

different. Therefore, we added image threshold segmentation based on the initial homography matrix in the experiment, and 

completed the above work of finding the homologous points on the segmented images. The final realization of registration accuracy 

of IIM images are in 1-2 pixels (RMSE). This provides a reliable data assurance for the subsequent study of using IIM images to 
inverse the lunar elements. 

* Corresponding author 

1. INTRODUCTION

For the past few decades, image registration has been widely 

used in many applications including image mosaic (Tsai et al., 

2010), deformation detection (Radke et al., 2005), image fusion 

(Zhang et al., 2011),cartography (Moigne et al., 2012),etc. The 

purpose of image registration is to obtain two image spatial 

transform relationships corresponding to the same region, to 

achieve image to another image transformation. The image 

registration from different data sources is conducive to data 

fusion, and then extracts more useful information. 

The Wide-angle Camera (WAC) of the Lunar Reconnaissance 

Orbiter Camera (LROC), almost every month to achieve global 

moon image coverage (Denevi et al., 2010) , hereinafter referred 

to as LROC. The Interference Imaging Spectrometer (IIM) is 

one of the eight payloads of Chang'E-1, responsible for 

obtaining mineralogical and lunar mineral chemistry 

information (Ouyang et al., 2010). The reflectance spectral 

characteristics of lunar surface materials is an important 

information source for detecting the material properties of the 

lunar surface and the quantitative inversion of the mineral 

elements(Lucey, 2006; Zou et al., 2004).The accurate 

registration of IIM images can provide data for the inversion of 

global lunar geology mineral elements. 

Image registration methods proposed in literatures consist of the 

following four step like components: feature detection, feature 

matching, transform model estimation, image resampling and 

transformation.(Falco et al., 2008). Each of the mentioned 

registration steps plays an important role in the registration 

process. However, among them one of the important steps is the 

feature matching step(Hossein-Nejad and Nasri, 2016). Feature 

matching directly affects the results of image registration. At 

present, the methods of feature matching mainly includes: 

cross-correlation(Guizar, 2008; Wolberg and Zokai, 2000), 

FFT-based cross-correlation (Chen et al., 1995; Foroosh et al., 

2002; Gilbert, 2002; Reddy and Chatterji, 1996a; Reddy and 

Chatterji, 1996b),least squares technique (He et al., 2007; Zhao 

et al., 2016),image matching based on SIFT(Hossein-Nejad and 

Nasri, 2016; Yi et al., 2008). The least squares method is 

suitable for cases where the error points are less. SIFT-based 

feature matching produces more error points, and Wei, Wang et 

al. proposed the use of RANSAC to eliminate error points(Wei 

et al., 2008). However, through this way, IIM images have few 

correct points remain. It is feasible to manually select the 

homologous points for registration, but a lot of homologous 

points will cost a huge time and effort. Therefore, the difficulty 

of IIM and LROC images registration is to find a large number 

of accurate homologous points on the condition of saving 

manpower 

In this paper, we selected a certain number of homologous 

points as control points, and try to ensure that these points are 

evenly distributed on the image. We segmented the IIM and 

LROC images, and calculated the homography matrix based on 

the control points from segmented IIM and LROC image blocks. 

And then, by using the homography matrix, we can predict the 

position of homologous points. The identity of the homologous 
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points is by orientation correlation in frequency domain(Fitch et 

al., 2002).After image matching, we utilized RANSAC(Wei et 

al., 2008) to remove the error points. And the method of 

weighted least squares is used to update the homography 

matrix; the final positions of the homologous points are output 

after several iterations. IIM image data of three orbits (2841, 

2842, and 2843) are tested by this method. The accuracy 

estimation of the registration results is based on more than 200 

checking points of each orbits obtained manually. These 

checking points are not participating in the experiments, which 

can be used for assessment of the whole image registration 

results. The RMSE of checking points from different IIM orbits 

image registration results are in 1-2 pixels. 

 

This paper is divided into four sections. The experimental 

principle used in this paper is in the second section. The results 

of the experiment and analysis are in the third section. The 

conclusion and future work is at the end of this paper. 

 

2. RESEARCH DATA AND METHOD 

2.1 Research Data 

The IIM images cover about 78% of the lunar region, 

distributed between 70 ° S and 70 ° N. IIM uses push-sweep 

imaging, single-orbit imaging width of 25.6km, imaging height 

of 200km, space resolution of 200m. The IIM images have 32 

bands in the range between 480 and 960 nm(Ouyang et al., 

2010) . The experimental data used in this paper are 2C level of 

radiation data which calibrated by the laboratory. As the data of 

the 1-5, 32 bands SNR are relatively lower, so the experiments 

exclude these bands(Mingliang et al., 2015; Wu et al., 2012). 

 

The baseline data used in this paper is the mosaic data of the 

global lunar monochromatic (645nm) image of the Lunar 

Reconnaissance Orbiter Camera (LROC) Wide Angle Camera 

(WAC). In order to realize the accurate registration of IIM data, 

the original IIM images are converted to the moon 

equirectangular system with LROC image, and the LROC 

image is resampled to have the same resolution of 200 m/pixel 

as the IIM images. We also use low-pass filter processing IIM 

images to smooth image noise. The 25, 20, 11 bands of 26 

bands on IIM images are used for RGB color synthesis, which 

have a better quality. Taking into account the illumination 

change between IIM images and LROC image is too large. We 

performed histogram matching of IIM images based on LROC 

image. Finally, we create the gray-scale image of the IIM 

images to complete subsequent image matching. 

 

Image registration requires homologous points, the use of 

traditional cross-correlation method or SIFT method cannot 

extract a lots of homologous points on the IIM image with 

high accuracy.Therefore, some homologous points are added as 

control points in the experiment firstly. These control points can 

be used to calculate the initial homography matrix, and predict 

the homologous point’s position. 

 

2.2 Proposed Accurate Registration Method 

In this paper, the process of accurate registration is divided into 

four parts: image segmentation, image matching by orientation 

correlation(Fitch et al., 2002), fitting the homologous points 

with quadratic polynomial model (Wong and Fieguth, 2009), 

image resampling by nearest neighbor resampling and 

transformation. The main contents of this paper are the image 

segmentation, image matching and eliminate the mismatch 

points. Therefore, in the following description, we mainly 

explain these parts. 

 

2.2.1 Image Segmentation: IIM images cover large area in 

the south-north latitude, which requires more homologous 

points in order to achieve accurate registration of IIM images. 

Furthermore, the position offsets between the IIM images and 

the LROC image from different region are different. The whole 

IIM image cannot be corrected by the simple rotation 

translation. In this paper, the original IIM and LROC images are 

divided and calculated the homography matrix(Wang and Liu, 

2006) corresponding to the segmented images. Since the 

homography matrix can define the interrelationship between the 

two images, any point on an image can find the corresponding 

point on another image, and the corresponding point is 

unique(Ueshiba and Tomita, 2003). Using the homography 

matrix to achieve it’s predicted of the homologous point. Each 

image block after image segmentation corresponds to a 

homography matrix. In this way, it is possible to improve the 

accuracy of the predicted homologous point’s position. It is 

easier to find the correct coordinates of the homologous point 

by image matching around the position, and to obtain more 

accurate homologous points. 

 

The entire image segmentation process can be divided into two 

steps: image segmentation, image combination. The final 

realization of the images is unevenly divided. The realization of 

the method: The IIM and LROC images are divided into small 

image blocks, and the manually selected control points are also 

divided into the corresponding image blocks, and then calculate 

the homography matrix of the current IIM image block and the 

LROC image block. The current image block is recorded as 1, 

which indicates the image block has been judged. The equation 

for the homography matrix is as follows: 

 

 
[
𝑥′
𝑦′
1

] = [
𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
𝑎7 𝑎8 1

] ∙ [
𝑥
𝑦
1

] (1) 

 

Where 𝑥′ and 𝑦′ correspond to the vertical and horizontal 

coordinates of the pixel point on the IIM image blocks, 

respectively [𝑥′ 𝑦′ 1]𝑇  is the representation of the 

homogeneous coordinates of the point. The  𝑥 and 𝑦 correspond 

to the horizontal and vertical coordinates of the LROC image 

pixel point respectively, and the homogeneous coordinates are 

expressed as[𝑥 𝑦 1]𝑇. The a1 to a8 correspond to the eight 

independent pending parameters of the homography matrix, and 

the image can be corrected at 8 degrees of freedom. So solve the 

homography matrix at least 4 pairs of homologous points. We 

use the control point coordinates (greater than 4) of the current 

images block on LROC to obtain the homography matrix by 

least squares(Bin et al., 2011). And then create four 

neighborhood directions of the current image block; four 

neighborhood directions diagram is as follows: 

 

 
Figure 1 Four neighborhood direction diagram 

 

Traverses the four neighbourhoods direction of the current 

image block, if the image block of the current traversal direction 
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exists and is not marked as 1,and it is judged whether or not the 

image block can be merged with the current image block A. At 

the same time, mark the image block of the current traversal 

direction as 1. The control point coordinates of the current 

traversing direction LROC image block (e.g., B1) are 

substituted into the homography matrix, and we can obtained a 

calculated coordinates 𝑘𝑖 of IIM images block. The actual value 

𝑘𝑖 ’ has already obtained by manually selected. Thus we can use 

the offset between the calculated value and actual value. We 

calculate the mean value of those offsets. The calculation 

equation is as follows, where 𝑛𝑢𝑚  indicates the number of 

control points corresponding to the current image block. If the 

mean f𝑘 is less than a certain threshold, it is assumed that the 

homography matrix can also be applied to the image blocks of 

the current traversal direction and the current traversal direction 

can be combined. 

 

 
f𝑘 =

∑ ‖𝐻 ∙ 𝑘𝑖 − 𝑘𝑖 ’‖2𝑛𝑢𝑚
𝑖=1

𝑛𝑢𝑚
 (2) 

 

Here we set the threshold f𝑘  of 3. After that the homography 

matrix of the combined image was calculated by least squares 

method. At the same time if the calculated value is greater than 

the threshold in this step, the image block of current traversal 

direction will not be combined, and determine the next direction 

of the current image block. 

 

In this process, there may be cases where the number of control 

points of the image block is less than 4, this time the current 

image block is merged directly with its traversing direction 

image block until the number of control points of the combined 

image block can be used to calculate the homography matrix, 

and then the image blocks were judged whether can be 

combined. When the image segmentation is completed, the 

image blocks of LROC image and IIM images are output along 

with their corresponding control point coordinates. Subsequent 

matches are done on those split images. 
 

2.2.2 Image Matching: The illumination of IIM and LROC 

images vary greatly, after the histogram matching, this 

difference still exists, reflected in the image is the grayscale 

difference between homologous points. The traditional image 

matching methods are mainly based on the grayscale, the 

grayscale difference between homologous points will lead to a 

large number of image points match failure or mis-match. 

Therefore, in this paper ,we use orientation correlation(Fitch et 

al., 2002). This method is robust to changes in light. 

 

Using the control points’ coordinates on the segmented image 

blocks, the homography matrix (Equation 1) is calculated by 

least squares. The coordinates of pixels on the LROC image 

blocks are substituted into the homography matrix to obtain 

corresponding predictions of IIM images, and the coordinates of 

the homologous points can be obtained by using orientation 

correlation. 

 

Firstly, the IIM and LROC orientation images were constructed: 

Traversing the pixel points 𝑓(𝑥, 𝑦) on the LROC image blocks, 

creating search window centered on 𝑓(𝑥, 𝑦)  .and a search 

window with same size centered on the predicted point 𝑔(𝑥, 𝑦) 

on the IIM image blocks, and the orientation image is created as 

follows: 

 

 
𝑓𝑑(𝑥, 𝑦) = 𝑠𝑔𝑛 (

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+ 𝑖

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
) (3) 

sgn(x) = {
 0,   if |x| < 0

  
𝑥

|𝑥|
, otherwise

 

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= 𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦) 

𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
= 𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦) 

 

Where 𝑓(𝑥, 𝑦) represents the gradient of the original image at 

the coordinates x and y, and 𝑓𝑑 (x, y) corresponds to the image 

pixel value after the orientation image is created. The sgn(x) 

represents a signal function. The orientation image of the search 

window on the IIM image is also created according to equation 

3, and the value of its pixel on orientation image is denoted as 

𝑔𝑑(𝑥, 𝑦) .Orientation images are matched using correlation 

(Gilbert, 2002).Correlation is computed quickly with Fast 

Fourier Transforms(FFTs).The  𝐹𝐷(𝑘, 𝑙)  is denoted by 𝑓𝑑(𝑥, 𝑦) 

after fast Fourier transform, and 𝐺𝐷(𝑘, 𝑙)  corresponds to the 

value of 𝑔𝑑(𝑥, 𝑦) after fast Fourier transform. IFFT () is the 

inverse transform function of fast Fourier, and 𝐺𝐷
∗(𝑘, 𝑙 ) is 

conjugate to the complex value of 𝐺𝐷(𝑘, 𝑙) . The correlation 

coefficients matrix obtained by the image correlation is 

calculated as follows: 

 

 IFFT(𝐹𝐷(𝑘, 𝑙) ∙ 𝐺𝐷
∗(𝑘, 𝑙)) (4) 

 

By obtaining the maximum value of the correlation coefficients’ 

matrix, we can get the offset of the homologous point position 

relative to the center pixel of the IIM search window, and then 

we can get the coordinate of homologous point. 

 

2.2.3 Error Points Removal: The homologous points 

obtained by orientation correlation may be exist error points. 

The method used in this paper to remove the error points is 

RANSAC(Hartley and Zisserman, 2003). If the image matching 

can obtain N pairs of the homologous points, the matching point 

pair 𝑃𝑖 andP𝑖 ’ respectively correspond to the points obtained by 

the LROC image and the points obtained by the orientation 

correlation on IIM images. The homography matrix 𝐻  is 

estimated according to the optimal value of the cost function J, 

as shown in function 5. 

 

 

J = ∑(‖𝐻 ∙ 𝑃𝑖 − P𝑖 ’‖2 + ‖𝐻−1 ∙ P𝑖 ’ − 𝑃𝑖‖)

𝑁

𝑖=1

 (5) 

 

After the RANSAC estimate, we can obtain the homography 

matrix H which minimizes the above cost function J. According 

to the equation 6, we determine whether 𝑃𝑖 is the internal point 

or the outer point according to the European distance (Equation 

6). If 𝑃𝑖 is the internal point, and then preserve the points pair 𝑃𝑖 

andP𝑖 ’.The number of internal points is M and the number of 

external points is N-M. 

 

 distance=‖𝐻 ∙ 𝑃𝑖 − P𝑖 ’‖2 + ‖𝐻−1 ∙ P𝑖 ’ − 𝑃𝑖‖2 

f(x) = { 
distance < t2, internal point

distance ≥ 𝑡2,             outer point
 

(6) 

 

Where t  is the value after test, set to 0.8, 𝑖  = 1... N. The 

homography matrix 𝐻  obtained by RANSAC only describes 

four pairs of the homologous points, and its accuracy is difficult 

to be guaranteed. In addition to the estimation of the 

homography matrix, the control points we selected should also 

be included. However, taking into account the control points 

relative to the homologous points obtained from image 

matching should have higher accuracy, so we use weighted least 
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squares method to calculate the homogeneity matrix by the 

homologous points preserved from RANSAC and the control 

points.  

The homography matrix is used to replace the initial 

homography matrix to predict the position of the homologous 

points, and the image matching and error point removal are 

repeated. At the same time, the manually selected control points 

on the LROC image block are substituted into the homography 

matrix to obtain the predicted values on the IIM image block, 

and calculate the mean offset between all predicted points and 

their actual values (Equation 2). Iterating this process and found 

that the mean offset is smaller. When the mean offset tends to 

be stable, the number of iterations is output and the iterations is 

stopped .The final positions of the homologous points are 

output. 

3. EXPERIMENTAL RESULT AND ANALYSIS

3.1 Experimental Data 

The study data are shown in Figure.2: Fig.A is the LROC image 

of the global lunar, and b1, b2, b3 represent the IIM image of 

orbit 2841, 2842, 2843 which be registered in the experiments. 

The data of the orbit 2843 has a large difference with the data of 

the orbit 2841, 2842 in the coverage of the north and south 

latitudes (coverage smaller), so the data is considered separately 

in the subsequent image segmentation. 

3.2 Result of Accurate Registration 

The contents of the experiment include the image segmentation, 

the image matching, and the removal of the mismatch points. 

Through the above experiments we can obtain a large number of 

homologous points from IIM images of orbits 2841, 2842, 

2843, respectively. The quadratic polynomial of LROC image 

and IIM image is fitted with these homologous points, and the 

polynomial is used to realize the accurate registration of IIM 

image data by image nearest neighbor resampling. 

In this paper, the accurate registration flow chart is as follows, 

in which part of the dashed box is the main experimental 

contents of this paper: 

3.2.1 Image Segmentation: Image segmentation can be 

divided into image segmentation and image combination. 

Different sizes of image blocks can be obtained after the image 

segmention. We should try to ensure that the small image block 

before combining should contain at least four manually selected 

control points, so as to be used to calculate the homography 

matrix to determine the combine threshold (Equation 2). This 

point we have already mentioned in the section 2.2.1. In 

addition, IIM images on both sides (Fig.6 b1, b2, b3) have no 

data, in the experiment the corresponding range of IIM images 

and LROC image should not be added into the image 

segmentation. Finally, different size of image blocks both on 

LROC image and IIM images were obtained(Orbit 2841，2842，
2843). 

Figure 2. LROC image (A) and three orbiter images of IIM: image 2841(b1), image 2842 (b2), image 2843 (b3) 

Figure 3. The accurate registration flow chart 

LRO image IIM images

LRO image blocks IIM image blocks

Homologous points

Quadratic polynomial

Registration result

Resampling

Image segmentation

Image matching

Homography matrix

Remove error points

RANSAC

Control points

Iterations>n

Weighted

least squares
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The following table shows the number of control points 

manually selected on the three orbits of IIM in this paper, the 

number of cutting times in the image x and y directions, and the 

number of image blocks corresponding to each orbital images 

acquired after image segmentation. It can be seen from the table 

that the number of cutting images is related to the number of 

manually selected control points. As the IIM orbital image 2843 

is not complete, it has a different number of split. Its number of 

pixels in the x, y direction is less than orbital images of 2841, 

2842. 

Orbits 
Control 

points 

Cutting 

number 

(x direction) 

Cutting 

number 

(y direction) 

Image 

blocks 

2841 156 12 10 7 

108 12 9 6 

80 12 7 5 

60 12 5 6 

2842 156 12 10 6 

108 12 9 6 

80 12 7 5 

60 12 5 5 

2843 107 7 6 7 

85 7 5 5 

66 7 4 4 

53 7 4 4 

Table 1. IIM images of each orbital data segmentation 

3.2.2 Orientation Correlation and Error Points Removal: 

After image segmentation we get the image blocks of the IIM 

images for each orbit. In the image matching process, each orbit 

image of the IIM to traverse all the image blocks on them, to 

complete the image matching and get homologous points of 

whole orbit. So the image matching is actually completed on the 

different size of image blocks. In the image matching, we 

calculate the initial homography matrix (Equation 1) based on 

the coordinates of the control points corresponding to the image 

blocks. Since only the control points are calculated, the weights 

of all control points is set to 1.And then traverse the points on 

the LROC image block and substitute them into the 

homography matrix to obtain the predicted value of the 

coordinates of the homologous points on IIM image block. 

Create a search window with a size of 29*29 centered on the 

predicted coordinate and create a window of the same size 

centered on the point on the LROC image block to complete the 

orientation correlation (2.2.2). The match is completed in the 

frequency domain, the matching time of the method is short and 

the image matching can be done in a few minutes. We use 

RANSAC to remove the mismatch points (2.2.3) of the image, 

and use the remained “internal points” combining with manual 

selected control points to update the homography matrix by 

weighted least squares method. 

Due to the high precision of the manually selected control 

points, and the number of control points is relatively small; we 

give the control points weighted value of 1 after several tests. 

However, the method proposed in this paper to obtain a large 

number of the homologous points as the weight of 0.1. The 

updated homography matrix can be used to calculate the 

predicted coordinates of the homologous points and to complete 

the image matching. All the image blocks after four iterations 

the mean offset of manually selected control points between 

predict value and actual value tend to be stable (Equation 2), 

and finally output the homologous points. 

Each orbit of the image data we have carried out four groups of 

experiments to test a different number of manually selected 

control points through the method proposed in this paper to get 

a huge number of homologous points. The final number of 

homologous points and the matching time as follows: 

Table 2. The number of homologous points and matching time 

3.3 Results Analysis 

In this paper, we use a number of homologous points added 

manually on the image to evaluate the registration results of our 

proposed method. Those homologous points can be viewed as 

checking points. Checking points selection method: creating 

grid in the LROC and IIM original image (Fig.4 a), manually 

select the checking points on the image added grid. The purpose 

of this step is to ensure that the checking points are evenly 

distributed on the image. These points are not included in the 

experiments in this paper and can be used as an assessment of 

the entire IIM image registration result. After the experiments in 

the text we can automatically get a large number of the 

homologous points, those points were used to fit the quadratic 

polynomial model to achieve the registration of the IIM images 

added checking points (Fig.4 b) The ideal result of the 

registration is that the IIM images after registration can be 

completely coincident with the LROC image, and the positions 

of the checking points are coincident (Fig.4 c). 

Figure 4 Checking points selection diagram 

If the checking point’s location of IIM registration image and 

LROC image exist deviation .This can be considered as the 

error of registration results. Based on this criterion, we 

evaluated the registration results using the offsets between the 

checking points on the corrected IIM image and the checking 

point coordinates of the corresponding position on the LROC 

image, where the orbit 2841 selected 366 checking points, orbit 

2842 selected 363 checking points, orbit 2843 selected 284 

checking points. 

The following table shows the root mean square error (RMSE) 

of the checking points’ offset, the number of homologous points 

obtained from the above experiments and the number of 

manually selected control points. From this table we can draw 

the conclusion that the method proposed in this paper can 

extract a huge number of homologous points, and the RMSE of 

all experiments are within two pixels, of which the bold 

displays are the best results of three orbital image registrations. 

Orbits 
Homologous 

points 
Matching time（s） 

2841 1135 182 

1124 178 

1778 162 

1907 151 

2842 1416 188 

1869 169 

1354 178 

788 138 

2843 1423 180 

1077 171 

1335 161 

828 131 
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Fig.5 shows the checking points’ offsets from each orbit of the 

IIM image displayed in the x-direction and y-direction of the 

image. The pink line corresponds to the checking points’ offsets 

between the origin IIM images and LRO image, the green line 

corresponds to the checking points’ offsets by method proposed 

in this paper, while the red line corresponds to the checking 

points’ offsets of manually selected homologous points. It can 

be seen the method proposed in this paper can realize the 

accurate registration of IIM images .Compared the checking 

points’ offsets of registration method by manually selected 

homologous points and registration method proposed in this 

paper, it can be seen that the maximum offsets of the 

registration method by manually selected homologous points is 

reduced through the registration method proposed in this paper. 

Where the 2841 orbital offset in x direction is reduced from five 

pixels to three pixels, the maximum offset of the orbit 2842 in 

the x direction is also reduced from three pixels to two pixels, 

and the maximum value of the offset in y direction of orbit 2842 

Orbits 
RMSE/Number of homologous points/Number of control points 

Experiment1 Experiment2 Experiment3 Experiment4 

2841 1.440/1907/60 1.423/1778/80 1.323/1149/108 1.378/1135/156 

2842 1.488/788/60 1.424/1449/80 1.500/1869/108 1.575/1416/156 

2843 1.553/828/53 1.509/1335/66 1.474/1077/85 1.385/1423/107 

Table 3.The RMSE of check points’ offset on three orbit IIM images after registration 

Figure 5.The offsets of three orbit IIM images are displayed in x direction and y direction 

Figure 6.The results of comparison before and after registration 
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is reduced from four pixels to two pixels, the maximum offset 

in the orbit 2843 x direction is reduced from five pixels to two 

pixels. The offsets of all points are within 3 pixels. 

The positions of the larger checking point’s offsets before 

image registration are mainly concentrated on the upper panel 

and the right panel of the image. The difference between the 

entire IIM images offsets can reach more than a dozen pixels. 

After image registration, the checking points’ offsets of the IIM 

and LRO images no longer reflect this trend. The checking 

points’ offsets between the registration images and LRO image 

are all reduced to a smaller value. 

Finally, we marked the checking point’s offsets in size and 

direction on the mosaic image of three orbital images. Fig.6 in 

the left picture shows results that the original three orbits of the 

IIM images superimposed on the LROC image, Fig.6 on the 

right is the mosaic of the IIM registration images superimposed 

on the LROC image, and the arrow indicates the direction of the 

offset. We circled the lunar craters in red. There existed a large 

deviation between the IIM images and the LROC image before 

the IIM images are registered, and the positions of lunar craters 

coincide after registration. The sizes of these offsets marked on 

the map are basically within 2 pixels. 

4. CONCLUSIONS AND FUTURE WORKS

IIM images have a large coverage in the north-south latitude. 

Therefore, the registration method in this paper focuses on how 

to obtain a huge number of accurate homologous points to 

achieve accurate registration. In this paper, the image 

segmentation method is used to divide the image into image 

blocks of different sizes, and the manually selected control 

points on the image blocks were used to calculate the 

homography matrix. By using the homography matrix can 

predict the homolography points’ position, and then based on 

the orientation correlation to obtain the homologous point 

coordinates to achieve image registration. The experiment 

results show that the proposed method in this paper can obtain a 

huge number of accurate coordinates of the homologous points. 

The RMSE of checking points of best registration results on 

three orbital IIM images are all within 1.5 pixels. The method 

propose in this paper can achieve the accurate registration of the 

image. Subsequent studies will focus on how to further reduce 

the manual selection of control points to obtain more accurate 

results. 

REFERENCES 

Bin, W.U., Zhu, H.Y., Xiao, X.T., Xue, T., 2011. Extraction of 

plane target image features based on homography matrix in 

visual measurement. Journal of Optoelectronics Laser 22, 

1211-1215. 

Chen, Q., Defrise, M., Deconinck, F., 1995. Symmetric Phase-

Only Matched Filtering of Fourier-Mellin Transforms for Image 

Registration and Recognition. Pattern Analysis & Machine 

Intelligence IEEE Transactions on 16, 1156-1168. 

Denevi, B.W., Robinson, M.S., Sato, H., Hapke, B.W., Eliason, 

E.M., Hiesinger, H., Jolliff, B.L., Malin, M.C., Mcewin, A.S.,

Ravine, M.A., 2010. Lunar Reconnaissance Orbiter Wide Angle

Camera Observations of the Moon, European Planetary Science

Congress 2010, p. 333".

Falco, I.D., Cioppa, A.D., Maisto, D., Tarantino, E., 2008. 

Differential Evolution as a viable tool for satellite image 

registration. Applied Soft Computing 8, 1453-1462. 

Fitch, A.J., Kadyrov, A., Christmas, W.J., Kittler, J., 2002. 

Orientation Correlation, British Machine Vision Conference 

2002, BMVC 2002, Cardiff, Uk, 2-5 September, pp. 133--142. 

Foroosh, H., Zerubia, J.B., Berthod, M., 2002. Extension of 

phase correlation to subpixel registration. IEEE Transactions on 

Image Processing A Publication of the IEEE Signal Processing 

Society 11, 188-200. 

Gilbert, R., 2002. Evaluation of FFT Based Cross-Correlation 

Algorithms for Ppaper Image Velocimetry. University of 

Waterloo. 

Guizar, M., 2008. Efficient subpixel image registration by 

cross-correlation. Optics Letters 33, 156. 

Hartley, R., Zisserman, A., 2003. Multiple View Geometry in 

Computer Vision. Cambridge University Press. 

He, Y., Yap, K.H., Chen, L., Chau, L.P., 2007. A Nonlinear 

Least Square Technique for Simultaneous Image Registration 

and Super-Resolution. IEEE Transactions on Image Processing 

16, 2830-2841. 

Hossein-Nejad, Z., Nasri, M., 2016. An adaptive image 

registration method based on SIFT features and RANSAC 

transform ☆. Computers & Electrical Engineering. 

Lucey, P.G., 2006. Understanding the Lunar Surface and Space-

Moon Interactions. Reviews in Mineralogy & Geochemistry 60, 

83-219. 

Mingliang, M.A., Wang, C., Shi, R., Gao, W., 2015. The 

Research and Assessment of Topographic Registration and 

Correction of Chang'E-1 IIM Data Based on LRO LOLA DEM 

Data. Journal of Geo-Information Science. 

Ouyang, Z.Y., Chunlai, L.I., Zou, Y.L., Zhang, H.B., Chang, L., 

Liu, J.Z., Liu, J.J., Wei, Z., Yan, S.U., Wen, W.B., 2010. 

Primary scientific results of Chang'E-1 lunar mission. Science 

China Earth Sciences 53, 1565-1581. 

Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B., 2005. Image 

change detection algorithms: a systematic survey. IEEE 

Transactions on Image Processing A Publication of the IEEE 

Signal Processing Society 14, 294. 

Reddy, B.S., Chatterji, B.N., 1996a. An FFT-based technique 

for translation, rotation, and scale-invariant image registration. 

IEEE Transactions on Image Processing A Publication of the 

IEEE Signal Processing Society 5, 1266-1271. 

Tsai, C.L., Li, C.Y., Yang, G., Lin, K.S., 2010. The edge-driven 

dual-bootstrap iterative closest point algorithm for registration 

of multimodal fluorescein angiogram sequence. IEEE 

Transactions on Medical Imaging 29, 636-649. 

Ueshiba, T., Tomita, F., 2003. Plane-based calibration algorithm 

for multi-camera systems via factorization of homography 

matrices, IEEE International Conference on Computer Vision, 

2003. Proceedings, pp. 966-973 vol.962. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W1, 2017 
2017 International Symposium on Planetary Remote Sensing and Mapping, 13–16 August 2017, Hong Kong

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-3-W1-191-2017 | © Authors 2017. CC BY 4.0 License.

 
197



Wang, J., Liu, Y., 2006. Characteristic Line of Planar 

Homography Matrix and Its Applications in Camera 

Calibration, International Conference on Pattern Recognition, 

pp. 147-150. 

Wei, W., Hong, J., Tang, Y., 2008. Image Matching for 

Geomorphic Measurement Based on SIFT and RANSAC 

Methods, International Conference on Computer Science and 

Software Engineering, pp. 317-320. 

Wolberg, G., Zokai, S., 2000. Image registration for perspective 

deformation recovery, Aerosense, p. 12. 

Wong, A., Fieguth, P., 2009. Fast phase-based registration of 

multimodal image data. Signal Processing 89, 724-737. 

Wu, Y., Zhang, X., Yan, B., Gan, F., Tang, Z., Xu, A., Zheng, 

Y., Zou, Y., 2012. Global absorption center map of the mafic 

minerals on the Moon as viewed by CE-1 IIM data. Science 

China 55, 561-562. 

Yi, Z., Zhiguo, C., Yang, X., 2008. Multi-spectral remote image 

registration based on SIFT. Electronics Letters 44, 107-108. 

Zhang, Q., Wang, L., Li, H., Ma, Z., 2011. Similarity-based 

multimodality image fusion with shiftable complex directional 

pyramid. Pattern Recognition Letters 32, 1544-1553. 

Zhao, W., Tian, Z., Yang, L., Yan, W., Wen, J., 2016. Image 

registration using a kernel partial least squares based 

mismatches removal method. AEU - International Journal of 

Electronics and Communications 70, 427-435. 

Zou, Y.L., Liu, J.Z., Liu, J.J., Xu, T., 2004. Reflectance Spectral 

Characteristics of Lunar Surface Materials. Research in 

Astronomy and Astrophysics 4, 97-104. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W1, 2017 
2017 International Symposium on Planetary Remote Sensing and Mapping, 13–16 August 2017, Hong Kong

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-3-W1-191-2017 | © Authors 2017. CC BY 4.0 License. 198



AUTOMATIC DETECTION AND RECOGNITION OF CRATERS BASED ON THE 

SPECTRAL FEATURES OF LUNAR ROCKS AND MINERALS 

L. Ye a, X. Xu a, D. Luan a, W. Jiang a, Z. Kang a *

a Surveying and Mapping Engineering, School of Land Science and Technology, China University of Geosciences 

(Beijing), Xueyuan Road, Haidian District, Beijing, 100083 CN – ljyebj@163.com 

KEY WORDS: Spectral Characteristics, MI , Band Ratio Method, Impact Crater Classification 

ABSTRACT: 

Crater-detection approaches can be divided into four categories: manual recognition, shape-profile fitting algorithms, machine-learning 

methods and geological information-based analysis using terrain and spectral data. The mainstream method is Shape-profile fitting 

algorithms. Many scholars throughout the world use the illumination gradient information to fit standard circles by least square 

method. Although this method has achieved good results, it is difficult to identify the craters with poor "visibility", complex structure 

and composition. Moreover, the accuracy of recognition is difficult to be improved due to the multiple solutions and noise 

interference. Aiming at the problem, we propose a method for the automatic extraction of impact craters based on spectral 

characteristics of the moon rocks and minerals: 1) Under the condition of sunlight, the impact craters are extracted from MI by condition 

matching and the positions as well as diameters of the craters are obtained. 2) Regolith is spilled while lunar is impacted and one of 

the elements of lunar regolith is iron. Therefore, incorrectly extracted impact craters can be removed by judging whether the crater 

contains "non iron" element. 3) Craters which are extracted correctly, are divided into two types: simple type and complex type 

according to their diameters. 4) Get the information of titanium and match the titanium distribution of the complex craters with normal 

distribution curve, then calculate the goodness of fit and set the threshold. The complex craters can be divided into two types: normal 

distribution curve type of titanium and non normal distribution curve type of titanium. We validated our proposed method with MI 

acquired by SELENE. Experimental results demonstrate that the proposed method has good performance in the test area.  

1. INTRODUCTION

The Moon is the nearest celestial body to the Earth and catches 

lots of attention for a long time(Ouyang, 2005). The surface of 

lunar is covered with a variety of big and small circular 

structures including craters, lunar rays and arched structures 

associated with craters, which are significant features of the 

lunar surface (Ouyang, 2005). The formation process of impact 

craters, morphological characteristics and spatial distribution 

provide clues and methods of the study about the lunar evolution 

in different aspects for people (Huang, 2009). The researches on 

lunar craters have a significant influence on the process of 

human understanding and exploration of the moon. 

At present, the researches on impact craters in the world mainly 

attach importance to how to extract impact craters in CCD 

images or DEM data by using related algorithms. Few scholars 

have carried out further research on the extracted craters. Based 

on the illumination gradient information, Junhua Feng et al use 

the Chang’e-1 CCD images to fit the edge ellipses by the least 

square method (Feng, 2010). Zongyu Yue et al studied on the 

identification of impact craters using the visible / near-ultraviolet 

band images obtained from Clementine (Yue, 2008). Based on 

cross-correlation, M Magee et al proposed a method of template 

matching, which is calculated by the standardized cross-

correlation method and found that the method is suitable for 

small, relatively simple craters (Magee, 2003). Y Sawabe et al 

added UV-VIS band multispectral data to the study about the 

automatic identification and classification of craters from 

Clenmentine and Apollo lunar highlands and lunar mare. In the 

experiment, they found that the FeO2 content in the crater was 

* Corresponding author.  This is useful to know for communication with the appropriate person in cases with more than one author.

lower than that in the surrounding area (Sawabe, 2005). Based 

on the Hough transformation, K Homma introduces the thought 

of parallel computing, experimenting with SELENE image data, 

increasing the computational speed greatly without affecting the 

recognition accuracy (K Homma, 1997). Jr Kim et al eliminated 

more than 85% error extracted carters by using the Eigenspace 

construction algorithm based on artificial neural networks 

proposed by Turk and Pentland (Kim, 2005). Tomasz F Stepinski, 

Erik R Urbach et al used the decision tree algorithm for the 

candidate impact craters, which is based on setting decision 

conditions to determine whether they belong to impact craters. 

(Stapinski,2009; Urbach,2009). 

Taking into account the accuracy of the data constraints, impact 

craters have a high error extraction rate. Few scholars try to 

remove error craters and automatically classify them. 

Accordingly, we propose an algorithm to determine the 

correctness of the extracted craters and realize the automatic 

classification based on the spectral characteristics of the lunar 

rock and minerals in this paper. 

2. EXTRACT CRATERS FROM MI

Under the conditions of sunlight, Zhongfei Luo used CCD data 

whose spectral channel is 500-700nm (Chen, 2009) to extract the 

craters by an automatic detection algorithm based on feature 

matching (Luo, 2014). The thinking of extraction includes 

threshold segmentation, region growing, adding conditions of 

image characters, extracting the edge of craters and fitting into 

standard circles. The extraction is based on four image 

characters. Figure 1 is the flow diagram of extracting algorithm. 
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The image is classified into 

bright,dark and background areas

Import MI 

image

Threshold segmentation

The dark areas and bright areas are 

clustered Individually and numbered

Region growing

Bright areas and dark areas matching

Import image feature conditions

Fitting standard circle

Extract the edges and find the 

appropriate edge points

 
Figure 1.  Automatic crater detection algorithm based on 

feature matching  

 
MI data contains 9 bands and the Spectral channel is 415-

1550nm. Because craters in MI images still match the four image 

characters: ①The edges of craters are close to circle. ②The line 

which connects the center of the highlight and the shadow is 

nearly parallel to the direction of sun light. ③The ratio between 

the area of the craters and distance between the center of light 

and the shadow fluctuates in a certain range. ④The gray value 

variation of the light and the shadow is small (Jin, 2009), we can 

use the algorithm proposed by Luo to extract the craters. We use 

the matching features, as follows to extract craters. 

 
                     <20° 

                   s=（Sa +Sb ）/r2                              s>0.3            （1） 

𝑝 = 𝑚𝑖𝑛 (Sa /Sb , Sb /Sa )              𝑝 < 3.9  
 

where θ = the angle between direction of sun light and line 

connecting the center of the highlight and the shadow.  

S = the ratio between number of pixels in the light 

and shadow and area of a circle whose radius equals 

the distance between the center of light and shadow.  

Sa = the number of pixels in the shadow.  

Sb = the number of pixels in the light.  

r = the distance between the center of light and 

shadow.  

p = the minimum value of the ratio between the 

number of pixels in the shadow and the light. 

 

Figure 2 is the effect picture of extracting craters in a sample of 

MI images. 

 

 
Figure 2. Effect picture of extraction algorithm based on feature 

matching (N39°-40°， E323°-324°, the center wavelength is 

1548nm, the spatial resolution is 62m) 

 

3. ERROR ELIMINATION 

The structure and material composition of the impact craters is 

complicated, and the lighting conditions vary from region to 

region. It leads to that provided that merely in the sunlight, the 

extractions of the impact craters on CCD images which based on 

condition matching have error extractions. In this paper, by 

determining whether the standard circles contain "non iron"  

element, we make error eliminations for the craters which have 

been extracted by the extraction algorithm based on feature 

matching. Due to the special environment of the lunar, lunar 

regolith has unique mineral composition and completely 

different from the earth, and there is a great quantity of nanoscale 

elemental iron in the lunar regolith particles even cemented glass 

because of a lot of space weathering (Taylor LA., 2005). The 

mineral absorption characteristics of the moon are mainly 

influenced by ferrous iron and titanium from the crystal structure 

aspect (Wang Zhenchao, 2011). In the study of data from 

Clenmentine and Apollo lunar highlands and lunar mare, Y 

Sawabe et al found that the concentration of FeO2 in the crater 

was much lower than in the surrounding area (Sawabe, 2005). 

 

 
Figure 3. Effect picture of error elimination (N39°-40°， E323°-

324°, the center wavelength is 1548nm, the spatial resolution is 

62m, the yellow area in the picture is defined as regions rich in 

"non iron" element, and the gray area are regions rich in iron) 

 

Lunar regolith contains a large amount of iron. It can be inferred 

that when a meteorite strikes the moon, the lunar regolith was 

spilled, the iron content in the craters less compared to the 
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outside. The iron information can be extracted using the central 

wavelength of 1250nm/750nm (Yu, 2009). We make iron 

extraction ratio less than a certain threshold defined as "non iron" 

element. If the extracted standard circle contains the “non iron” 

element, it can be considered that the standard circle is extracted 

correctly, otherwise it is wrong. Figure 3 is the effect picture of 

error elimination.  

 

4. CRATER CLASSIFICATION 

In this paper, we divided the correct craters into the simple and 

complex type, and the complex type can be divided into normal 

distribution curve type of titanium and non normal distribution 

curve type of titanium. 

 
4.1. Divide Craters into Simple and Complex Type   

The air of the moon is very thin and it almost can be considered 

a vacuum. Its surface crystalline rock, molten glass etc directly 

exposed to the universe, suffered from the solar wind, cosmic 

rays and meteorites radiation and impact. The surface of the 

depth of about tens of nanometers formed because of weathering 

influences (Wang, 2011). The impact strength and weathering 

effect of large-diameter impact craters are generally stronger 

relative to small-diameter craters, and their morphological and 

material composition is more complex. The diameter of simple 

crater is generally less than 4km (Zhao, 2011). 

 

Table 1 is for the sample area of the four craters whose diameters 

are about 4km. It can be seen that the profile line and the 

distribution of titanium content in the craters are quite 

different. Therefore, we use 4km as the threshold, the diameter 

of crater less than 4km is divided into simple impact crater, more 

than 4km is divided into complex crater.  

 

4.2. The Classification of Complex Craters 

Mare basalt can be divided into three types based on the content 

of titanium, namely high titanium basalt, low titanium basalt, 

and high-alumina low-titanium basalt (Cloutis, 1991). As shown 

in Table 2, the shape of the more regular crater such as flat, no 

uplift, etc., the titanium content distribution curve in line with or 

similar to the normal distribution. Irregular shape of the impact 

of the crater, such as containing the central peak and uplift, etc., 

the titanium content distribution curve in the fitting of the normal 

curve effect is much worse. We can determine the result of fitting 

by calculating the adjusted R-square of fit. The formula is as 

equation (2). 

 

adjusted R - square = 1 - SSE(n-1)/SST(v)             (2) 

 

 

Where          SSE= ∑ wi(yi
-ŷ

i
)
2n

i=1                                         

SST= ∑ wi(yi
-y̅)

2n
i=1  

 

The information of the titanium element is extracted by the band 

ratio with the center wavelength of 415nm/750nm (Yu, 2009).  

The non normal distribution curve type of titanium craters 

should match following formula:  

 

adjusted R - square = 1 - SSE(n-1)/SST(v)<=0.9        (3) 

 
Otherwise the craters are classified as normal distribution curve 

type of titanium.  

 

position shape normal curve fitting profile 

N42°-41°，
E335°-336° 

 
adjusted R-square: 

0.9661 
 

N48°-49°，
E327°-328° 

 
adjusted R-square:  

0.7830 
 

Table 2. A comparison of regular and irregular craters 

 

5. EXPERIMENT AND ANALYSIS 

The method described in this paper based on the data of multi 

band images (MI) obtained by SELENE. The total number of 

bands is nine. Wavelengths of five bands located in visible light 

spectrum are 415nm, 750nm, 900nm, 950nm, 1000nm. Those 

images have 20m spatial resolution. Another four bands whose 

spatial resolution is 62m belong to near-infrared and their 

wavelengths are 1000nm, 1050nm, 1250nm, 1548nm. We use 

DEM from LOLA of LRO, whose spatial resolution is 30m, 

comparing with results of our method to judge the accuracy of 

our classification. The tested area located in a mid-latitude area 

from 39°N-50°N, 25°W-38°W in Sinus Iridum. 

 

5.1. Result of Extraction in MI 

Carry out threshold segmentation, region growing, adding 

conditions of image characters, extracting the edge of craters and 

fitting into standard circles to the MI image of N39°-40°, E323°-

324°. Figure 4 shows the result of extraction. 

 

number position shape diameter normal curve fitting adjusted R-square profile 
1 N41°-40°, E334°-335° 

 

4.0km 

 

0.9200 

 
2 N41°-40°, E335°-336° 

 

4.4km 

 

0.8662 

 
3 N42°-41° ,E335°-336° 

 

4.5km 

 

0.9661 

 

4 N43°-42° ,E329°-330° 

 

4.2km 

 

0.8744 

 

Table 1. A comparison of 4 impact craters whose diameters are about 4km. 
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Figure 4. The result of extraction. The strip in the picture was 

obtained under different sunlight condition. As a result, some 

craters were not extracted in this paper. We just discuss wrong 

extraction. We do not take non extracted into consideration. 

 

5.2. Elimination of Wrong Extracted Craters 

We deal with the above image by using band ratio 

1250nm/750nm to get the information of iron. After processing, 

the max and min of DN value in this image are 2.522866 and 

0.997822 separately. Then, set the area whose DN value between 

0.997822 and 1.35 as "non iron" area. The testing result was 

in Figure 5. Craters in red circles are extracted by the algorithm 

based on feature matching. In the red squares are craters right for 

artificial recognition but wrong for "non iron" algorithm. Pink 

squares show craters wrong for artificial recognition, right for  

"non iron" algorithm. Green squares are right for both artificial 

recognition and "non iron" algorithm. Other craters signed only 

by red circles are wrong for both artificial recognition and "non 

iron" algorithm. 

 

 
Figure 5. Extracting and "non iron" algorithm result 

 

By judging whether the extracted standard circle contains "non 

iron" region or not, the correctness of the impact crater could be 

judged. Table 3 is the confusion matrix of 505 extracted craters. 

 

 

Accuracy of algorithm based on feature matching:  

（20+65）/505=16.8% 

Accuracy of "non iron" algorithm: 

（20+384）/505=80.0% 

As is shown above, in mid-latitude area the accuracy of 

algorithm based on feature matching is low. What is more, after 

adding "non iron" algorithm, the accuracy significantly 

improved. 

 

5.3. Identify the Types of Craters 

There are no craters whose diameters are greater than 4km in 

N39°-40°, E323°-324°, so all the craters in this area belong to 

simple type. Gather statistics of craters whose diameters are 

greater than 4km in N40°-50°, E322°-335°. Carry out band ratio 

415nm/750nm to these images, to get the information of titanium 

(Yu, 2009). Match the distribution of titanium with normal 

distribution curve and calculate the adjusted R-square. In the 

following table 4, craters 1, 3, 5, 7, 8, 9, 10, 11, 13 have adjusted 

R-square less than 0.9, they are non normal distribution curve 

type of titanium, others are normal distribution curve type of 

titanium. 

 

5.4. Discussion 

Currently, the research on impact craters in the world mainly 

stays at the extraction level, and the accuracy of the extraction is 

limited due to the limitation of the data accuracy and the 

multiplicity of Solutions. What's more, few scholars study 

further inspection and classification after extracting the craters.  

Aiming at this problem, this paper presents a crater inspection 

and classification algorithm based on the spectral characteristics 

of lunar rocks and minerals. 

 

In the process of experiment, we found that the distribution of 

iron in the crater is less, while iron is rich in lunar 

regolith． Therefore, speculated that this phenomenon is due to 

the impact on surface, soil is splashing out. Based on the 

statistics of 15 craters with diameter greater than or equal to 4km 

in the experimental area, it is found that the diameter of the crater 

approximately 4km shows great difference. Hence, in this article, 

threshold as the 4km in diameter, craters whose diameters are 

less than 4km are divided into simple type, the others are divided 

into complex type. Some craters whose wall or bottom has 

uplifted part, and the distribution of titanium content have a large 

proportion near the uplifted part, as shown in Figure 6. 

 

 
Figure 6. Effect picture of titanium content in impact crater,  

the white area is relatively high content of titanium parts,  

N43° - 44°, E333° - 334° 

 

Speculates that is because the craters breaking the surface 

material, release of pressure results to the spring back and the 

deeper underground materials exposed. Speculates that the 

                 Artificial Recognition 

  

"Non iron" Algorithm 

right wrong 

 right 20 36 

 wrong 65 384 

Table 3.  Confusion matrix of wrong extracted craters 
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mechanism is shown in Figure 7.  

 

 
Figure 7. Schematic diagram of the different forming  

mechanism of the uplift part and the non-uplift part of the 

titanium content. The white and black parts in the figure are 

different strata, and their titanium content is different.  

 

It is believed that with the improvement of data accuracy and the 

optimization of research methods, the relative relationship 

between the material composition and its morphological 

structure will be deeper understood and investigated. 

 

6. CONCLUSIONS 

Based on the spectral characteristics of the lunar rocks and 

minerals, the error removal and the classification of impact 

craters are carried out in this paper, and the following 

conclusions are obtained: 

 

1. By determining whether the standard circle contains "non 

iron" element to determine whether the extraction of the 

craters is correct, we raised the crater correct extraction rate 

from 16.8% to 80.0% in the mid-latitude test area. 

 

2. We calculated 15 craters whose diameters are greater than 

4km in the test area. The titanium content distribution of 

each complex crater was compared with normal curve. 

After the threshold was set by adjusted R-square, we 

numbe
r 

position shape diameter Type normal curve 
fitting 

adjusted R-
square 

profile 

1 N41°-40° 
E323°-324° 

 

7.6KM Non normal 

 

0.8949 

 
2 N41°-40° 

E334°-335° 
 

4KM Normal 
 

0.92 
 

3 N41°-40° 

E335°-336° 
 

4.4KM Non normal 

 

0.8662 

 

4 N42°-41° 

E335°-336° 
 

4.5KM Normal 

 

0.9661 
 

5 N43°-42° 

E329°-330° 
 

4.2KM Non normal 

 

0.8744 

 

6 N44°-43° 

E326°-327° 
 

5.2KM Normal 

 

0.9142 

 

7 N44°-43° 

E333°-334° 
 

14KM Non normal 
 

0.7835 

 

8 N44°-43° 

E335°-336° 
 

4KM Non normal 
 

0.7927 
 

9 N46°-45° 

E325°-326° 
 

5.2KM Non normal 

 

0.8298 

 
10 N47°-46° 

E327°-328° 
 

7KM Normal 

 

0.8463 

 

11 N48°-47° 

E323°-324° 
 

7.4KM Non normal 

 

0.8959 
 

12 N49°-48°

E326°-327° 
 

15KM Normal 

 

0.9292 

 

13 N49°-48° 

E327°-328° 
 

12KM Non normal 

 

0.783 
 

14 N49°-48° 
E328°-329° 

 

8KM Normal 

 

0.9393 

 

15 N50°-49° 

E334°-335° 
 

10KM Normal 

 

0.9455 
 

Table 4. Statistical table of impact craters whose diameters are greater than 4km 
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divided the complex craters into the normal/non normal 

distribution curve type of titanium, in order to achieve the 

purpose of classification of complex craters. 

3. A classification of complex types based on the distribution

of titanium content is proposed.

Due to the limited number of impact craters in the test area and 

the complexity of the morphological structure and material 

composition of the impact crater itself, the method we proposed 

has large room for improvement. We will study the relative 

relationship between the morphological structure and the 

material composition in the next stage and try to use the method 

of deep learning in which a large number of craters will be 

trained to improve the accuracy of the algorithm and be fully 

automated. 
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Coarse-to-Fine Extraction of Small-Scale Lunar
Impact Craters From the CCD Images of

the Chang’E Lunar Orbiters
Zhizhong Kang , Xingkun Wang, Teng Hu, and Juntao Yang

Abstract— Lunar impact craters form the basis for lunar
geological stratigraphy, and small-scale craters further enrich the
basic statistical data for the estimation of local geological ages.
Thus, the extraction of lunar impact craters is an important
branch of modern planetary studies. However, few studies have
reported on the extraction of small-scale craters. Therefore, this
paper proposes a coarse-to-fine resolution method to automat-
ically extract small-scale impact craters from charge-coupled
device (CCD) images using histogram of oriented gradient
(HOG) features and a support vector machine (SVM) classifier.
First, large-scale craters are extracted as samples from the
Chang’E-1 images with spatial resolutions of 120 m. The
SVM classifier is then employed to establish the criteria for
classifying craters and noncraters from the HOG features of the
extracted samples. The criteria are then used to extract small-
scale craters from higher resolution Chang’E-2 CCD images with
spatial resolutions of 1.4, 7, and 50 m. The sample database
is updated with the newly extracted small-scale craters for the
purpose of the progressive optimization of the extraction. The
proposed method is tested on both simulated images and multiple
resolutions of real CCD images acquired by the Chang’E orbiters
and provides high accuracy results in the extraction of the small-
scale impact craters, the smallest of which is 20 m.

Index Terms— Chang’E satellites, charge-coupled device
(CCD) images, histogram of oriented gradient (HOG) feature,
small-scale impact craters, support vector machine (SVM)
classifier.

I. INTRODUCTION

IN RECENT years, the leading countries and organizations
in the aerospace industry have initiated a new round of

lunar exploration projects, such as NASA’s Lunar Recon-
naissance Orbiter and Lunar Crater Observation and Sensing
Satellite, China’s Chang’E-1 and Chang’E-2 orbiters [1], and
Japan’s SELenological and Engineering Explorer, with the
goal of returning to the moon [2]. These satellites have
provided reliable data for the planetary researches, such as
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studies of the spatial differences and distributions of the linear
and circular structures associated with impact craters [3]–[7].

The complex topography and geomorphology of the moon’s
surface have been studied by determining the distributions and
characteristics of linear and circular structures [8]–[12]. Impact
craters are among the most noticeable geomorphological unit
on the planetary surface. Their morphological characteristics
and spatial distributions have been researched in recent stud-
ies, which yields significant information primarily regarding
studies of relative and absolute surface chronologies, erosional
processes, hydrological evolution, and climate history [13].
To date, a large number of crater detection algorithms have
been proposed. The morphological fitting-based methods, such
as circular Hough transform [14]–[16] and generalized Hough
transform-based ellipse detection method [17], were exploited
to automatically identify impact craters from the planetary
images. Xie et al. [18] proposed a method for detecting craters
that is based on infrequently used morphological characteris-
tics, such as centers and rims of simple craters, and the slopes
and derivatives of complex ones, to complete current crater
catalogs. Cheng et al. [19] used the conic fitting method to
automatically identify asteroid impact craters in the framework
of optical navigation by spacecraft, which can provide the
detection rate with over 90% and the false alarm rate with less
than 5%. Salamunićcar and S. Lončarić [20] proposed a crater
detection algorithm based on fuzzy edge extraction operator
and the Hough/Radon transform to identify impact craters
from digital topographic data, which can update the existing
crater catalogs. Ding et al. [21] selected crater candidates using
multiresolution feature point extraction and then obtained
craters using region growing, edge extraction, and ellipse fit-
ting based on the statistical method. Kang et al. [22] proposed
a method to extract possible crater candidates based on their
geometric features using charge-coupled device (CCD) images
from the Chang’E-1 satellites and improved the final selection
by using 3-D features extracted from digital elevation model.
These unsupervised methods have the advantage of being
fully autonomous without human annotation. Nevertheless, as
the previous studies [22]–[24] introduced, the morphological
fitting-based methods are generally suitable for extracting large
craters.

With the increasing availability of the high-resolution
imagery or topography data, many researchers were also
devoted to detecting and cataloging small-scale impact craters,
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which can extend the database of the geological tectonics
of the moon to better estimate the geological ages of vari-
ous moonscapes, on planetary surface. Bandeira et al. [25]
automatically recognized Martian impact craters with radii
larger than 5 pixels based on a probability volume cre-
ated by template matching on images of planetary surface.
Grumpe and Wöhler [26] synthetically generated templates
based on Lunar Orbiter Laser Altimeter track data and
knowledge about the reflectance behavior of the surface as
well as the known illumination and viewing geometry for
automatic detection of small craters (<10 km diameter).
Following the idea of generating crater templates developed by
Grumpe and Wöhler [26], Salih et al. [27] developed a
template-based crater detection method for a mosaic of wide-
angle camera images of the Lunar Reconnaissance Orbiter
Camera under known illumination condition to obtain the
crater size-frequency distribution, which is then utilized for
estimating the absolute model age of the surface. However,
template matching-based method requires a known illumina-
tion direction of examined area, and its recognition accuracy is
greatly affected by the templates and the detection sensitivity
threshold.

In addition to the template matching-based methods, schol-
ars also introduced machine learning into the automatic
identification of small craters and constructed the model
classifier to detect them. Stepinski et al. [28] considered
round and symmetric topographic depressions using the
Mars Orbiter Laser Altimeter 128 pixels/degree digital ele-
vation model of Mars as crater candidates, which were
assigned either crater or noncrater labels using decision trees.
Urbach and Stepinski [12] developed a fully automatic detec-
tion of sub-kilometer craters in large panchromatic images
centered on the Nanedi Valles on Mars. To date, many crater
detection methods have been inspired by face or pedestrian
detection which used gray-scale texture and shape features,
such as local binary pattern (LBP) [29], Haar-like [30], and
histogram of oriented gradient (HOG) [31], and learned a
supervised method for identification, which can enhance the
classification accuracy. Xin et al. [24] first extracted dark-
area regions as crater candidates in a full high-resolution
imaging science experiment image and then detected small
crater inside a candidate site using Adaboost classifier which
combined LBP and Haar-like. Liu et al. [32] considered the
impact crater as a closed basin structure and detected impact
crater region using watershed algorithm from lunar digital
elevation model. Di et al. [33] developed a boosting method
that combined LBP, Haar-like, and scaled Haar-like, for crater
detection from topographic data. Bandeira et al. [34] proposed
a crater detection method for identifying sub-kilometer craters
in high-resolution panchromatic images. In their framework,
they first found crater candidates using shape features, and then
used texture features, namely, Haar-like, in combination with
boosting-based method to identify these candidates into craters
and noncraters. Martins et al. [35] automatically recognized
impact craters from Mars surface images captured by the
Mars Orbiter Camera onboard Mars Global Surveyor probe
with Haar-like features combined with a boosting algorithm.
Wang et al. [36] proposed a new sparse boosting method, into

which an improved sparse kernel density estimator was inte-
grated, for automatically detecting sub-kilometer craters using
texture features extracted from a large and high-resolution
image of Martian surface. Jin and Zhang [37] automatically
detected small craters from the images acquired by high-
resolution stereo camera (HRSC) onboard Mars Express based
on the modified boosting method, which was learned by
constructing a dual-threshold weak classifier and adjusting the
criterion of updating weights in the training process. For these
conventional passive learning methods, in which the training
samples are generally chosen randomly without interaction
with the classifier, their recognition performances are primarily
determined by the quality and quantity of training samples.

In order to improve the classifier performance or reduce
the number of samples that the classifiers require, some
strategies, such as feature dimension reduction [13], [38],
active learning or semisupervised learning [39], and trans-
fer learning [40], were also adopted in crater detection.
Cohen and Ding [13] improved the classification performance
of a Bayesian classifier by reducing the number of texture
features via genetic search method to detect impact craters
larger than 200 m in nadir panchromatic image acquired by
HRSC aboard Mars Express spacecraft. Liu et al. [38] used
Bernoulli trials for removing irrelevant texture features to
detect small craters that were between 200 and 5000 m in
diameters. Liu et al. [39] built an adaptive learning system
that combined active learning with semisupervised learning to
automatically recognize sub-kilometer craters using Haar-like
features extracted from high-resolution panchromatic planetary
images. Ding et al. [40] developed an automatic detection
framework for sub-kilometer craters. In their framework,
image texture features were extracted, in combination with
boosting method to classify crater candidates into craters
and noncraters. For the regions where surface morphology
differs from what is characterized by the training data, transfer
learning was integrated with boosting method to improve
the detection performance. These strategies have led to the
significant progresses for impact crater detection. However,
the following challenges remain for automatically detecting
the small-scale craters: impact craters, especially small-scale
craters, generate various degrees of degeneration [40], which
results in lack of the robust and highly descriptive features of
impact craters. Moreover, the morphology among the small-
scale craters is significantly different, which causes the diffi-
culty of choosing the training samples.

Consequently, this paper presents a novel coarse-to-fine
approach to extract small-scale craters using large-scale craters
as samples, from which the extraction criteria are determined
using the features of HOG of the samples. The contributions
of the proposed method comprise the following.

1) HOG features are used to measure the similarity among
impact craters, which is insensitive to the illumination
change.

2) A coarse-to-fine extraction strategy is developed.
We first establish a coarse sample library, consisting of
the large-scale craters extracted by Kang et al. [22],
to learn an initial support vector machine (SVM)
classifier.
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Fig. 1. Workflow of our proposed method.

Considering the fact that planetary surfaces are not homo-
geneous [40], new crater samples are iteratively added to
the existing training set, which is exploited to optimize the
SVM classifier.

We describe the algorithm of the coarse-to-fine extraction of
the small-scale lunar impact craters in Section II. Section III
discusses the test results, after which we offer conclusions and
suggestions for further research in Section IV.

II. COARSE-TO-FINE EXTRACTION OF SMALL-SCALE

LUNAR IMPACT CRATERS

Unlike most objects subjected to automated recognition in
images, impact craters, especially small-scale impact craters,
usually are abundant [39] and lunar surfaces are hetero-
geneous, where nonuniform surface morphology frequently
exists [40]. Since impact craters of different sizes may have
similar characteristic patterns, i.e., nearly round edge, this
paper proposes a novel coarse-to-fine strategy to extract
small-scale craters using a machine learning method, which
employs the HOG features of large-sized craters as training
samples.

Fig. 1 shows the workflow of our proposed method. First,
large-scale craters are extracted from the Chang’E-1 images
with spatial resolutions of 120 m using the method proposed
by Kang et al. [22], and HOG features of the extracted
large-scale craters and noncraters are calculated to establish
a coarse sample library. Then, we adopt the SVM classifier as
a base classifier to find the criteria for distinguishing craters
from noncraters since SVM performs well in determining
the classifications with limited samples [41]–[43]. In the step
of learning, the small-scale craters are identified from the
high-resolution Chang’E-2 images using the learned SVM
classifier and the SVM classifier performance is progressively
optimized by the fine sample library that is updated using
the HOG features of the extracted small-scale craters. Finally,
these criteria are used to extract small-scale craters from
the higher resolution Chang’E-2 CCD images with spatial
resolutions of 1.4, 7, and 50 m. Key algorithms of our
proposed method are given in more detail in the following.

Fig. 2. Comparison between (a) large-scale crater in Chang’E-1 image and
(b) small-scale crater in Chang’E-2 image.

Fig. 3. Effect of noise filtering on edge extraction. (a) Results from an
unfiltered image. (b) Results after noise removal.

Fig. 4. Edge extraction results for a typical impact crater.

A. Establishment of Training Sample Database

As shown in Fig. 2, the large craters in the Chang’E-1
images look similar to the smaller ones in the Chang’E-2
images. Therefore, the extraction of training samples is per-
formed using the method proposed by Kang et al. [22] on the
images acquired by the CCD camera onboard the Chang’E-1
orbiters.

To remove the effects of noise, the input data sets are
denoised using a bilateral filter, which is a nonlinear, self-
adaptive filter that considers both spatial information and gray
similarities; it also discards noise while retaining the edge
information [44]. Afterward, the Robert operator is used for
edge extraction because it requires less computational work
than other operators, such as the Sobel, Prewitt, and Canny
operators. However, a few false edges may still be extracted
due to illumination effects, as shown in Fig. 3(b).

False edges are identified and removed by exploiting the
direction of the light, which is computed based on the camera
acquisition time and the viewing angle with respect to the
sun’s apparent position provided by the configuration file of
each image. The process is implemented using the fact that the
gray value of a true edge decreases in the direction of the light,
whereas the gray value of a false edge may increase (Fig. 4).
Specifically, if the false edges are caused by the contrast
between the shadow and the illuminated regions inside the
crater, the gradient of this edge will be oriented in the opposite
direction to the light direction. Accordingly, the absolute value
of the angle between the gradient and the light direction will
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Fig. 5. Example of detecting crater regions.

be greater than 90°. (The value of the angle ranges from
−180° to 180°). In contrast, the gradient direction of a true
edge is expected to be the same as that of the light direction,
which in turn causes the absolute value of the angle between
the two to be less than 90°. This condition is expressed as
follows:

∇ f · n > 0 (1)

where n represents the light direction vector, and ∇ f is the
gradient on the edge that is detected at (x , y). The product
in (1) is a scalar product. If the gradient direction of an
edge point forms an angle that is less than 90° from the
light direction, (1) is satisfied. Otherwise, the edge point
is considered to be a false edge. Then, impact craters are
extracted using the RANSAC-based circle fitting approach,
which exploits the fact that impact craters are nearly round.
Both craters correctly extracted craters as positive samples and
noncraters as negative samples are added to the training sample
database.

B. Detecting Crater Regions

In the step of SVM-based recognition, following face or
pedestrian detection, we scan the whole test images using
a sliding window [45] and each extracted sliding window
is classified as impact crater or nonimpact crater (as shown
in Fig. 5). To detect impact craters of different sizes, we resize
the test image iteratively and fix the size of sliding window.
During iteration, the test image is decreased to 0.9 times the
size of the previous one. The iteration is terminated till the size
of maximum crater in the test image is decreased less than the
size of sliding window. Due to the sliding window in crater
detection, a crater may be detected multiple times by different
sizes of sliding windows. Thus, we use the nonmaximum
suppression method based on the mean-shift algorithm [46]
to check the position of the detected impact crater regions
and delete the repeated ones.

C. Criteria for Classifying Craters and Noncraters

The illumination of craters in CCD images of different
satellites may vary from each other, and the crater shapes
can differ to some extent. As a feature descriptor which is
invariant to changes in illumination, shadows, and geometric
and photometric transformations, HOG features are used to

Fig. 6. Craters in the images with different illuminations.

Fig. 7. Relationship between illuminance and gamma index.

classify craters and noncraters. Fig. 6 shows that the gray
values of the crater are only distributed in the dark areas
owing to illumination or shadows, which results in the loss
of the image information. Therefore, before the extraction of
a HOG feature, gamma correction [47] is implemented on the
image to reduce the influences of illumination and shadows.

1) Gamma Correction: Gamma correction is a nonlinear
operation applied to the gray values of an input image, which
is defined by the following power-law expression:

Vout = AV γ
in (2)

where the nonnegative real input value Vin is raised to the
power γ and multiplied by the constant A, to get the output
value Vout. In the common case of A = 1, the inputs and
outputs are typically in the range of 0–1 [48].

When the gamma index is less than 1, the image inten-
sity and the image contrast of a low gray value will be
enhanced (Fig. 7).

Fig. 8 illustrates that after the gamma correction, the dis-
tribution of the intensities of the crater image becomes even
so that the crater in the image becomes easily recognizable
[Fig. 8(c) and (d)].

2) Generation of HOG: Dalal and Triggs [31] proposed
HOG features in 2005, which was first used in the field of
pedestrian detection. The basic idea of HOG features is that
the local appearance of an object can be well described by
the distribution of the gradient intensities and edge directions.
To extract HOG features, the image is divided into small
regions (i.e., cells) and a HOG is generated for each cell
as its feature descriptor. Local illumination and the contrast
between the foreground and background may vary, which leads
to a large variation of gradient intensities. Therefore, adjacent
cells are merged into a block, where gradient intensities are
normalized to form the feature descriptor of the block for
the purpose of reducing the influence of illumination. The
feature descriptors of all the blocks are sequentially joined
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Fig. 8. Results of gamma correction (gamma = 1/2.2). (a) Crater image
before correction. (b) Histogram of intensities before correction. (c) Crater
image after correction. (d) Histogram of intensities after correction.

Fig. 9. Gradient intensity and gradient direction of a crater. (a) Gradient
intensity. (b) Gradient direction.

to form the HOG feature of the image. Since a HOG feature
is generated from local cells, and the distortions of geometry
and illumination can only be present in larger areas, these
features are invariant to changes in illumination and geometric
and photometric transformations. Moreover, a HOG feature is
able to describe the shape of an object to be detected, so it
is quite suitable for the extraction of lunar craters which are
similar to the shape of a circle. The detailed process is as
follows:

1) First, the horizontal and vertical gradients of each pixel
(i, j) are computed, from which the gradient intensity
and gradient direction of the pixels (Fig. 9) are calcu-
lated using the following equation:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Gi = f (i + 1, j)− f (i − 1, j)

G j = f (i, j + 1)− f (i, j − 1)

G(i, j) =√
Gi (i, j)2 + G j (i, j)2

α(i, j) = tan−1
(

G j (i, j)

Gi (i, j)

) (3)

where f (i, j) is the gray value of the pixel (i, j),
Gi (i, j) is the horizontal gradient, G j (i, j) is the verti-
cal gradient, G(i, j) is the gradient intensity, and α(i, j)
is the gradient direction.

2) The image is evenly divided into cells (4 × 4 pixels).
Fig. 10(a) shows that from the starting point at the top
left corner, every 2× 2 adjacent cells are merged into a
block. The range of the gradient direction (0°–360°) is
divided into nine bins [Fig. 10(b)]. A histogram is then
generated for the nine bins to count how many gradient

Fig. 10. Process of generating a HOG. (a) Evenly divided cells. (b) Division
of the range of the gradient direction (0°–360°).

Fig. 11. HOGs of the four cells in a block.

TABLE I

BIN NUMBERS RELATIVE TO THE DIRECTIONS

direction values of the pixels in a cell fall into each bin.
Fig. 11 illustrates the histograms of the four cells in
a block. Table I shows the bin number relative to the
directions. If a gradient direction value falls into one of
the nine bins shown in Fig. 11, its gradient intensity is
added to the corresponding bin in the histogram.

Due to the correlation between adjacent cells in the image
and adjacent bins of the gradient directions, if the histogram of
a cell is generated by only considering that cell, many of the
gradient directions in the cell may be concentrated in one bin,
which is not really the case. To tackle this problem, trilinear
interpolation is employed to generate the histogram of a cell.

In Fig. 12, as far as a pixel (i, j) is concerned, it locates
at cell 0 and its gradient direction falls into bin 3 in the
histogram. The distances between pixel (i, j) and the centers
of the four adjacent cells (i1, j1), (i2, j1), (i1, j2), and (i2, j2),
as well as the differences between the gradient directions
of pixel (i, j) and the central directions of its neighboring
bins 2 and 3, are regarded as the weights with which (4) is
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Fig. 12. Illustration of trilinear interpolation.

used to add the gradient intensity of pixel (i, j) to those of its
neighboring bin 2 and bin 3 in the histogram of cell0, cell1,
cell2, and cell3

h(i1, j1, bin2)← h(i1, j1, bin2)

+G(i, j)

(
1− i − i1

di

) (
1− j − j1

d j

) (
1− α(i, j)− θ0

dθ

)

h(i1, j1, bin3)← h(i1, j1, bin3)

+G(i, j)

(
1− i − i1

di

) (
1− j − j1

d j

) (
1− α(i, j)− θ1

dθ

)

h(i2, j1, bin2)← h(i2, j1, bin2)

+G(i, j)

(
1− i − i2

di

) (
1− j − j1

d j

) (
1− α(i, j)− θ0

dθ

)

h(i2, j1, bin3)← h(i2, j1, bin3)

+G(i, j)

(
1− i − i2

di

) (
1− j − j1

d j

) (
1− α(i, j)− θ1

dθ

)

h(i1, j2, bin2)← h(i1, j2, bin2)

+G(i, j)

(
1− i − i1

di

) (
1− j − j2

d j

) (
1− α(i, j)− θ0

dθ

)

h(i1, j2, bin3)← h(i1, j2, bin3)

+G(i, j)

(
1− i − i1

di

) (
1− j − j2

d j

) (
1− α(i, j)− θ1

dθ

)

h(i2, j2, bin2)← h(i2, j2, bin2)

+G(i, j)

(
1− i − i2

di

) (
1− j − j2

d j

) (
1− α(i, j)− θ0

dθ

)

h(i2, j2, bin3)← h(i2, j2, bin3)

+G(i, j)

(
1− i − i2

di

) (
1− j − j2

d j

) (
1− α(i, j)− θ1

dθ

)

(4)

where h(i1, j1, θ) . . . h(i2, j2, θ) denotes the statistics of the
gradients of bin 2 and bin 3 in the histogram of cell 0, cell 1,
cell 2 and cell 3; G(i, j) and α(i, j), respectively, indicate the
gradient intensity and direction of pixel (i, j); di and d j are the
horizontal and vertical differences between the central pixels
of adjacent cells; and dθ represents the angular difference
between the central directions of two neighboring bins. The
size of a cell is set as 4× 4 pixels, while the width of a bin
is 40°, so di = d j = 4 pixels, dθ = 40◦.

As presented above, the weighted gradient intensity of each
pixel is added to those of its neighboring bins in the histogram
of the four cells adjacent to the pixel of interest, which finally
produces the histogram of the gradient directions for each
cell (Fig. 13).

Fig. 13. Histograms of gradient directions of the four adjacent cells generated
by using trilinear interpolation.

When the whole image is divided into cells for computation,
an aliasing effect will be present if only the correlations
between the pixels in a cell are considered instead of the pixels
between adjacent cells. As a result, the gradient directions of
pixels may be concentrated in a certain bin, which fails to
represent the true distribution of those gradient directions of an
image (Fig. 13). Fig. 13 shows that an evener histogram of
gradient directions can be generated, because the algorithm of
trilinear interpolation well considers the correlations between
pixels in adjacent cells. To generate the histogram of gradient
directions or the descriptor of a block, the histograms of the
cells in a block are sequentially connected into the histogram
of the gradient directions or the descriptor of the block. Due to
the variation of the local illumination and the contrast between
the foreground and background, the gradient intensity varies
greatly within a cell or a block. Therefore, the L2-norm (5)
was used to normalize the connected histograms

v ′ = v√
‖v‖22 + e2

(5)

where v is the descriptor before normalization, and v ′ is that
one after normalization. ‖v‖22 is the 2-norm of v, and e is a
small constant to keep the denominator as nonzero.

Fig. 14 illustrates the normalized block histogram of the
gradient directions of the four different craters and two non-
craters. In the normalized histogram, the gradient intensity
of a bin increases, with the color varying from blue to red.
From Fig. 14, we can tell that the histograms of the same
block (highlighted in red squares) in the four crater image
patches are similar to each other (e.g., the same bin reaches the
highest gradient direction value), while the histograms of the
same block in the two noncrater image patches are obviously
different.

The descriptors of all the blocks are finally connected into
a HOG feature (Fig. 15). As shown in Fig. 15, although
the sizes of the crater images of Fig. 15(a)–(c) are different,
their HOG features look similar, e.g., the edge of the crater
presents in a near circular shape, while the HOG feature of
the noncrater is irregular. This fact shows the potential of
the proposed coarse-to-fine strategy for extracting small-sized
craters using HOG features.

D. Crater Extraction Using SVM Classifier

After the generation of a HOG feature, we need to decide a
classifier for crater extraction. In the field of machine learning,
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Fig. 14. Normalized block histograms of gradient directions of craters and
noncraters. (a) Crater 1. (b) Crater 2. (c) Crater 3. (d) Crater 4. (e) Noncrater 1.
(f) Noncrater 2.

Fig. 15. HOG features of impact craters with different sizes. (a) Impact crater
with 125 m diameter and its HOG feature. (b) Impact crater with 2000 m
diameter and its HOG feature. (c) Impact crater with 8000 m diameter and
its HOG feature. (d) Noncrater and its HOG feature.

SVM [44] displays a unique advantage when the training
samples are limited and the dimensions of the features are
large. Since the number of lunar impact craters is limited and
a HOG feature is a high-dimensional feature, we employed
SVM as the classifier to extract impact craters.

We can regard the process of crater extraction as a binary
classification. The SVM classifier [44] is a binary classifier,
which key idea is to map the nonlinearly separable feature
space into a higher dimensional space by using kernel function,
such as radial basis function (RBF) [49], and then construct
the optimal hyperplane that should be as far away from
the samples of both classes as possible, which is based on
structural risk minimization. Suppose the sample set T =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi denotes the HOG
feature descriptor of a sample, yi indicates the label of a
sample, which is set to 1 for the crater and 0 for the noncrater,
and n is the number of samples.

The SVM classification task can be converted into a
mathematical function. The following equation represents a
separating hyperplane:

f (x) = ωTx + b (6)

Fig. 16. Distribution of experimental CCD images with different resolutions.

where (ω, b) is the eigenvector and eigenvalue calculated by
SVM based on the samples; x is the HOG feature of an object;
if the sgn( f (x)) = +1, the object is a crater; and if the
sgn( f (x)) = −1, the object is a noncrater. The following
equation is used to solve the optimal hyperplane:

min
1

2
‖ω‖2 s.t., yi (w

Txi + b) ≥ 1, i = 1, . . . , n (7)

where ‖ω‖ denotes the norm of the eigenvector that is the
length of the eigenvector; the shortest interval between sample
points is regarded as 1; thus, we can have yi (w

Txi + b) ≥ 1,
i = 1, . . . , n. For the details, please refer to [50].

E. Update of Sample Library

As proposed in Section II-A, the large-sized craters which
are extracted from the Chang’E-1 images are employed as
the initial samples. When identifying small-sized craters,
inevitably, there are false or missing extractions. Therefore,
we keep updating the sample library with extracted small-sized
craters as positive samples and noncraters as negative samples,
which can progressively optimize the recognition performance
of SVM.

III. EXPERIMENTAL RESULTS

The proposed approach was tested on both simulated images
and real CCD images with different resolutions which were
acquired by Chang’E orbiters and downloaded from the Sci-
ence and Application Center for Moon and Deep Space Explo-
ration of China (website: http://moon.bao.ac.cn). Fig. 16 shows
the regions covered by the experimental images, which are
near the landing site of Chang’E-3 (19.51° W, 44.12° N). The
images were acquired using a three-line array CCD stereo
camera in a push broom fashion. The orbital height of
Chang’E-1 was 200 km above the lunar surface, so the swath
width was 60 km, and the spatial resolution was 120 m. The
orbital height of Chang’E-2 was 100 km above the lunar
surface; accordingly, the swath width was 43 km, and the
spatial resolution was 7 m. When passing by Sinus Iridum,
the orbiter lowered its orbit to 15 km above the lunar surface;
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Fig. 17. Coarse-to-fine extraction of simulated impact craters with dif-
ferent scales and different eccentricities. (a) Detection results using initial
SVM classifier. (b) Detection results using optimized SVM classifier.

the spatial resolution of the CCD images acquired was accord-
ingly increased to 1.4 m. The spatial resolution of the lunar
ortho-images generated from the CCD images was 50 m.

A. Extraction of Simulated Impact Craters

To verify the effectiveness of the coarse-to-fine strategy,
a simulated experiment in this paper was conducted. The
simulated crater detections were determined in terms of the
differences between the simulated and computed parameters
of elliptical impact craters, i.e., the major axis, minor axis,
center, and orientation. The simulated and computed para-
meters of elliptical impact craters were set randomly, where
the range of orientation was [0◦, 180◦), the range of eccen-
tricity was [0, 0.7], or the range of roundness was [0.51, 1],
the minimum number of pixel of major axis was 20, and
the maximum number of pixel of major axis was 80. In the
simulated experiment, we first used a coarse simulated crater
library, which only consisted of standard circular craters, to
learn an SVM classifier. As shown in Fig. 17(a), the standard
circular craters and the elliptical craters with small eccentricity
could be correctly detected. However, some synthetic elliptical
craters with large eccentricity failed to be detected since the
HOG features of these craters differed from that of standard
circular craters. Then, we used the extracted elliptical craters
with small eccentricity to progressively update the simulated
crater library for optimizing the SVM classifier. As shown
in Fig. 17(b), the synthetic craters with large eccentricity could
be correctly recognized by the optimized SVM classifier.

B. Extraction of Coarse Samples From Chang’E-1
CCD Images

As presented in Section II-A, the extraction of coarse
samples was performed using the method proposed by
Kang et al. [22] (Fig. 18). We extracted 200 correct craters
from the Chang’E-1 CCD images as the positive samples
[Fig. 19(a)] and selected 168 noncraters as the negative
samples [Fig. 19(b)]. Table II lists the statistics of the sizes of
the positive samples. The diameters of the correct craters are
mostly larger than 5000 m.

C. Extraction of the Craters From the Chang’E-2
CCD Images Based on Coarse Samples

Experiments were implemented using the Chang’E-2
CCD images with different resolutions based on the coarse

Fig. 18. Results of the extraction of initial samples. (a) Chang’E-1
CCD images. (b) Edge extraction after image denoising. (c) RANSAC-based
edge fitting.

Fig. 19. Coarse samples extracted from Chang’E-1 CCD images (partial).
(a) Positive samples. (b) Negative samples.

TABLE II

STATISTICS OF THE SIZES OF THE POSITIVE SAMPLES

samples extracted from the Chang’E-1 images. In our exper-
iment, the optimal values of the relaxation variable ξ and
the parameter of the RBF σ as ξ = 2.5 and σ = 0.0455.
Figs. 20–22 show the extraction results of the different reso-
lution CCD images.

Tables III and IV show the statistics of the results from the
three different resolution CCD images. The results acquired by
using visual interpretation were considered to be ground truths.
Although the HOG features of the craters in the Chang’E-1
and Chang’E-2 images may look similar, we can still find
many dissimilar cases due to the clear illumination variations
between the Chang’E-1 and Chang’E-2 images (Fig. 23).
As a result, the average extraction rate is only 25% when
only using the samples acquired from the Chang’E-1 images.
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Fig. 20. Results of 50-m-resolution CCD images (Image 1). (a) Overview.
(b) Correct impact craters. (c) Falsely extracted craters.

Fig. 21. Results of 7-m-resolution CCD images (Image 2). (a) Overview.
(b) Correct impact craters. (c) Falsely extracted craters.

TABLE III

RESULTS OF THE EXTRACTION OF CRATERS FROM THE CHANG’E-2
CCD IMAGES BASED ON INITIAL SAMPLES

D. Results of the Extraction of Craters in the Chang’E-2
CCD Images Based on Chang’E-2 Samples

To improve the extraction, we updated the sample data-
base with the impact craters extracted from the Chang’E-2

Fig. 22. Results of 1.4-m-resolution CCD images (Image 3). (a) Overview.
(b) Correct impact craters. (c) Falsely extracted craters.

TABLE IV

SIZES OF THE IMPACT CRATERS EXTRACTED FROM THE CHANG’E-2
CCD IMAGES BASED ON INITIAL SAMPLES

TABLE V

TEST RESULT OF THE OPTIMAL SET OF SAMPLES

TABLE VI

TEST RESULTS OF DIFFERENT KERNEL FUNCTIONS

CCD images based on some initial samples. A set
of 240 impact craters under different illuminations were
selected as positive samples, and 120 noncraters were selected
as negative samples (Fig. 24).

To test the generalization ability of the sample set containing
the craters with different resolutions, i.e., to select an optimal
sample set which can perform well on different resolution
images, we divided the samples into two categories, i.e., a
training sample set and a test sample set. A training sample
set comprising 200 positive samples and 100 negative samples
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TABLE VII

TEST RESULT OF DIFFERENT PARAMETERS

TABLE VIII

RESULT OF DIFFERENT QUANTITIES OF SAMPLES

Fig. 23. HOG features of impact craters under different illuminations.

Fig. 24. Samples acquired from Chang’E-2 images. (a) Positive samples.
(b) Negative samples.

was randomly selected, and the other samples were included
in a test sample set. The SVM classifier was trained by using
a training sample set and verified by using a test sample set.
The above process was iterated to find an optimal sample set
for the crater extraction from Chang’E-2 images (Table V).
During the process, different kernel functions were also tested.
Table VI shows that the RBF kernel function had the best
performance. Table VII indicates that the optimal values of
the relaxation variable ξ and the parameter of the RBF were
ξ = 0.5, σ = 0.0337.

Since machine learning is a continuous learning progress,
we need to expand the sample set to increase the rate

Fig. 25. Optimized extraction results of 50-m-resolution CCD images
(Image I). (a) Overview. (b) and (c) Comparison between the results
before or after the optimization: the above images show the results based
on Chang’E-2 samples, while the images below illustrate the results based on
initial Chang’E-1 samples.

TABLE IX

RESULTS OF THE EXTRACTION OF CRATERS FROM THE CHANG’E-2
CCD IMAGES AFTER THE UPDATE OF THE SAMPLE SET

TABLE X

SIZES OF THE IMPACT CRATERS EXTRACTED FROM THE CHANG’E-2
CCD IMAGES AFTER THE UPDATE OF THE SAMPLE SET

of extraction. However, if SVM is employed as a classifier,
too many samples are not able to achieve a high rate of
extraction. Table VIII shows that the rate of extraction was
remarkably improved (9.5%–85.5%) when the number of sam-
ples increased from 80 to 550, while the extraction rate clearly
decreased (44.63%) when the number of samples increased
to 900 and stayed stable afterward.

Both Figs. 25–27 and Tables IX and X illustrate that the
optimization ensures a high extraction rate (84% in average)
by updating the sample set with extracted craters from the
Chang’E-2 images. Moreover, the proposed method is able to
extract craters as small as 20 m in diameter.
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TABLE XI

RESULTS OF THE EXTRACTION OF CRATERS USING BOTH THE PROPOSED METHOD AND THE BOOSTING-BASED METHOD

Fig. 26. Optimized extraction results of 7-m-resolution CCD images
(Image 2). (a) Overview. (b) and (c) Comparison between the results
before or after the optimization: the above images show the results based
on Chang’E-2 samples, while the images below illustrate the results based on
initial Chang’E-1 samples.

Fig. 27. Optimized extraction results of 1.4-m-resolution CCD images
(Image 3). (a) Overview. (b) and (c) Comparison between the results
before or after the optimization: the above images show the results based
on Chang’E-2 samples, while the images below illustrate the results based on
initial Chang’E-1 samples.

E. Compared With Other Existing Method

To further verify the effectiveness and robustness of the
proposed method in this paper, the frequently-used boosting-
based method [24], [34], [35], [40] was compared to
the proposed method using both image 4 and image 5.
The boosting-based method extracted Haar-like features and

Fig. 28. Comparison between the proposed method and the boosting-
based method. (a) Proposed method (Image 4). (b) Boosting-based method
(Image 4). (c) Proposed method (Image 5). (d) Boosting-based method
(Image 5).

LBP features and then learned an Adaboost classifier to
distinguish craters from noncraters. Table XI lists the per-
formance in extraction rate of the proposed method and the
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Fig. 29. Comparison of extraction rate on different size ranges between the
proposed method and the boosting-based method.

boosting-based method. The proposed method in this paper
is superior to the boosting-based method in terms of extrac-
tion rates with differences of 1.9% and 1.7%, respectively.
Fig. 28 presents a comparison of the recognition results
between the proposed method and the boosting-based method.
Fig. 29 shows the comparison of extraction rate on different
size ranges between the proposed method and the boosting-
based method. As shown in Fig. 29, both the proposed method
and the boosting-based method show a good recognition
performance for extracting impact craters larger than 2000 m,
whereas the proposed method shows higher extraction rates
than the boosting-based method for impact craters with diame-
ter of the range between 1000 and 2000 m, the range between
200 and 500 m, and less than 200 m, with the differences
of 4.49%, 1.36%, and 2.07%, respectively.

IV. CONCLUSION

In this paper, a coarse-to-fine method was proposed to
extract small-scale impact craters from the Chang’E satellites
CCD images using HOG features and SVM classifiers. The
SVM classifier was first trained by using the crater samples
extracted from the Chang’E-1 images with the resolutions
of 120 m to identify the craters and noncraters in terms of
their HOG features. The sample set was then updated using
the small-sized craters, which were acquired by employing an
SVM classifier from the high-resolution Chang’E-2 images.
The final extraction results with the high extraction rate were
achieved after the optimization of the coarse-to-fine updating
of the sample set. The proposed approach was tested on
CCD images with different resolutions (from 120 to 1.4 m),
which were acquired by the Chang’E satellites and covered
the regions near the landing site of Chang’E-3 (19.51° W,
44.12° N). The experimental results show that the proposed
approach can achieve a high extraction rate (83.6% on average)
and is capable of extracting impact craters as small as 20 m
from the images with multiple resolutions and under different
illumination conditions, which verifies the high robustness and
applicability of the presented coarse-to-fine extraction strategy.
Moreover, the proposed method outperforms the boosting-
based method for extracting impact craters with diameters of
different size ranges.

This paper mainly focuses on impact craters with circular
shapes; nevertheless, some geographical features such as small
volcanic constructs or valleys have similar image character-
istics as craters. The Compton–Belkovich volcanic complex,

for example, contains features that are superficially similar to
impact craters, but are in fact thought to be caldera structures.
Therefore, future research will, thus, perform the extraction
of irregularly shaped and complexly shaped craters and other
geological structures. Moreover, because the amplitude of the
brightness temperature that is observed by a passive radiometer
depends on the slope angle, we plan to use this additional
information to further improve the extraction and identification
of lunar craters.
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